
The field of machine learning is concerned with the 
development and application of computer algorithms 
that improve with experience1. Machine learning meth-
ods have been applied to a broad range of areas within 
genetics and genomics. Machine learning is perhaps 
most useful for the interpretation of large genomic 
data sets and has been used to annotate a wide variety 
of genomic sequence elements. For example, machine 
learning methods can be used to ‘learn’ how to rec-
ognize the locations of transcription start sites (TSSs) 
in a genome sequence2. Algorithms can similarly be 
trained to identify splice sites3, promoters4, enhancers5 
or positioned nucleosomes6. In general, if one can com-
pile a list of sequence elements of a given type, then a 
machine learning method can probably be trained to 
recognize those elements. Furthermore, models that 
each recognize an individual type of genomic element 
can be combined, along with (learned) logic about 
their relative locations, to build machine learning sys-
tems that are capable of annotating genes — includ-
ing their untranslated regions (UTRs), introns and  
exons — along entire eukaryotic chromosomes7.

As well as learning to recognize patterns in DNA 
sequences, machine learning algorithms can use input 
data generated by other genomic assays — for example, 
microarray or RNA sequencing (RNA-seq) expression 
data; data from chromatin accessibility assays such as 
DNase I hypersensitive site sequencing (DNase-seq), 
micrococcal nuclease digestion followed by sequencing 
(MNase–seq) and formaldehyde-assisted isolation of 

regulatory elements followed by sequencing (FAIRE–
seq); or chromatin immunoprecipitation followed by 
sequencing (ChIP–seq) data of histone modification or 
transcription factor binding. Gene expression data can 
be used to learn to distinguish between different dis-
ease phenotypes and, in the process, to identify poten-
tially valuable disease biomarkers. Chromatin data 
can be used, for example, to annotate the genome in 
an unsupervised manner, thereby potentially enabling 
the identification of new classes of functional elements.

Machine learning applications have also been exten-
sively used to assign functional annotations to genes. 
Such annotations most frequently take the form of 
Gene Ontology term assignments8. Input of predictive 
algorithms can be any one or more of a wide variety 
of data types, including the genomic sequence; gene 
expression profiles across various experimental condi-
tions or phenotypes; protein–protein interaction data; 
synthetic lethality data; open chromatin data; and 
ChIP–seq data of histone modification or transcrip-
tion factor binding. As an alternative to Gene Ontology 
term prediction, some predictors instead identify 
co‑functional relationships, in which the machine 
learning method outputs a network in which genes are 
represented as nodes and an edge between two genes 
indicates that they have a common function9.

Finally, a wide variety of machine learning methods 
have been developed to help to understand the mecha-
nisms underlying gene expression. Some techniques 
aim to predict the expression of a gene on the basis of 
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Abstract | The field of machine learning, which aims to develop computer algorithms 
that improve with experience, holds promise to enable computers to assist humans in 
the analysis of large, complex data sets. Here, we provide an overview of machine 
learning applications for the analysis of genome sequencing data sets, including the 
annotation of sequence elements and epigenetic, proteomic or metabolomic data. We 
present considerations and recurrent challenges in the application of supervised, 
semi-supervised and unsupervised machine learning methods, as well as of generative 
and discriminative modelling approaches. We provide general guidelines to assist in  
the selection of these machine learning methods and their practical application for the 
analysis of genetic and genomic data sets.
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Artificial intelligence
A field concerned with the 
development of computer 
algorithms that replicate 
human skills, including learning, 
visual perception and natural 
language understanding.

Heterogeneous data sets
A collection of data sets  
from multiple sources or 
experimental methodologies. 
Artefactual differences 
between data sets can 
confound analysis.

Likelihood
The probability of a data set 
given a particular model.

Label
The target of a prediction task. 
In classification, the label is 
discrete (for example, 
‘expressed’ or ’not expressed’); 
in regression, the label is of real 
value (for example, a gene 
expression value).

Examples
Data instances used in a 
machine learning task.

Supervised learning
Machine learning based on an 
algorithm that is trained on 
labelled examples and used to 
predict the label of unlabelled 
examples.

the DNA sequence alone10, whereas others take into 
account ChIP–seq profiles of histone modification11 
or transcription factor binding12 at the gene promoter 
region. More sophisticated methods attempt to jointly 
model the expression of all of the genes in a cell by 
training a network model13. Like a co‑functional net-
work, each node in a gene expression network denotes 
a gene; however, edges in this case represent, for exam-
ple, the regulatory relationships between transcription 
factors and their targets.

Many of the problems listed above can also be solved 
using techniques from the field of statistics. Indeed, the 
line between machine learning and statistics is at best 
blurry, and some prefer the term statistical learning over 
machine learning14. Historically, the field of machine 
learning grew out of the artificial intelligence commu-
nity, in which the term ‘machine learning’ became 
popular in the late 1990s. In general, machine learning 
researchers have tended to focus on a subset of prob-
lems within statistics, emphasizing in particular the 
analysis of large heterogeneous data sets. Accordingly, 
many core statistical concepts — such as the cali-
bration of likelihood estimates, statistical confidence 
estimations and power calculations — are essentially  
absent from the machine learning literature.

Here, we provide an overview of machine learning 
applications in genetics and genomics. We discuss the  
main categories of machine learning methods and  
the key considerations that must be made when apply-
ing these methods to genomics. We do not attempt 
to catalogue all machine learning methods or all 
reported applications of machine learning to genom-
ics, nor do we discuss any particular method in great 
detail. Instead, we begin by explaining several key 
distinctions in the main types of machine learning 

and then outlining some of the major challenges in 
applying machine learning methods to practical prob-
lems in genomics. We provide an overview of the 
type of research questions for which machine learn-
ing approaches are appropriate and advise on how to 
select the type of methods that are likely to be effec-
tive. A more detailed discussion of machine learning 
applied to particular subfields of genetics and genomics 
is available elsewhere15–18.

Stages of machine learning
Machine learning methods proceed through three 
stages (FIG. 1). As an example, we consider an applica-
tion to identify the locations of TSSs within a whole-
genome sequence2. First, a machine learning researcher 
develops an algorithm that he or she believes will lead 
to successful learning. Second, the algorithm is pro-
vided with a large collection of TSS sequences as well 
as, optionally, a list of sequences that are known not to 
be TSSs. The annotation indicating whether a sequence 
is a TSS is known as the label. The algorithm processes 
these labelled sequences and stores a model. Third, new 
unlabelled sequences are given to the algorithm, and it 
uses the model to predict labels (in this case, ‘TSS’ or 
‘not TSS’) for each sequence. If the learning was suc-
cessful, then all or most of the predicted labels will be 
correct. If the labels associated with test set examples are 
known — that is, if these examples were excluded from 
the training set because they were intended to be used 
to test the performance of the learning system — then 
the performance of the machine learning algorithm 
can be assessed immediately. Otherwise, in a prospec-
tive validation setting, the TSS predictions produced 
by the machine learning system must be tested inde-
pendently in the laboratory. Note that this is an exam-
ple of a subtype of machine learning called supervised  
learning, which is described in more detail in the next sec-
tion. This process of algorithm design, learning and test-
ing is simultaneously analogous to the scientific method 
on two different levels. First, the design–learn–test  
process provides a principled way to test a hypothesis 
about machine learning: for example, algorithm X can 
successfully learn to recognize TSSs. Second, the algo-
rithm itself can be used to generate hypotheses: for 
example, sequence Y is a TSS. In the latter setting, the 
resulting scientific theory is instantiated in the model 
produced by the learning algorithm. In this case, a key 
question, which we return to below, is whether and how 
easily a human can interpret this model.

Supervised versus unsupervised learning
Machine learning methods can usefully be segregated 
into two primary categories: supervised or unsupervised  
learning methods. Supervised methods are trained 
on labelled examples and then used to make predic-
tions about unlabelled examples, whereas unsuper-
vised methods find structure in a data set without 
using labels. To illustrate the difference, consider 
again gene-finding algorithms, which use the DNA 
sequence of a chromosome as input to predict the 
locations and detailed intron–exon structure of all of 
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Figure 1 | A canonical example of a machine learning application. A training set of 
DNA sequences is provided as input to a learning procedure, along with binary labels 
indicating whether each sequence is centred on a transcription start site (TSS) or not. The 
learning algorithm produces a model that can then be subsequently used, in conjunction 
with a prediction algorithm, to assign predicted labels (such as ‘TSS’ or ‘not TSS’) to 
unlabelled test sequences. In the figure, the red–blue gradient might represent, for 
example, the scores of various motif models (one per column) against the DNA sequence.
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Unsupervised learning
Machine learning based on an 
algorithm that does not require 
labels, such as a clustering 
algorithm.

Semi-supervised learning
A machine-learning method 
that requires labels but that 
also makes use of unlabelled 
examples.

the protein-coding genes on the chromosome (FIG. 2). 
The most straightforward way to do so is to use what 
is already known about the genome to help to build a 
predictive model. In particular, a supervised learning 
algorithm for gene finding requires as input a training 
set of labelled DNA sequences specifying the locations 
of the start and end of the gene (that is, the TSS and the 
transcription termination site, respectively), as well as 
all of the splice sites in between these sites. The model 
then uses this training data to learn the general proper-
ties of genes, such as the DNA sequence patterns that 
typically occur near a donor or an acceptor splice site; 
the fact that in‑frame stop codons should not occur 
within coding exons; and the expected length distribu-
tions of 5ʹ and 3ʹ UTRs and of initial, internal and final 
introns. The trained model can then use these learned 
properties to identify additional genes that resemble 
the genes in the training set.

When a labelled training set is not available, 
unsupervised learning is required. For example, con-
sider the interpretation of a heterogeneous collec-
tion of epigenomic data sets, such as those generated 
by the Encyclopedia of DNA Elements (ENCODE) 
Consortium and the Roadmap Epigenomics Project. 
A priori, we expect that the patterns of chromatin acces-
sibility, histone modifications and transcription factor 
binding along the genome should be able to provide a 
detailed picture of the biochemical and functional activ-
ity of the genome. We may also expect that these activi-
ties could be accurately summarized using a fairly small 
set of labels. If we are interested in discovering what 
types of label best explain the data, rather than imposing 

a pre-determined set of labels on the data, then we must 
use unsupervised rather than supervised learning. In 
this type of approach, the machine learning algorithm 
uses only the unlabelled data and the desired number of 
different labels to assign as input19–21; it then automati-
cally partitions the genome into segments and assigns 
a label to each segment, with the goal of assigning the 
same label to segments that have similar data. The unsu-
pervised approach requires an additional step in which 
semantics must be manually assigned to each label, 
but it provides the benefits of enabling training when 
labelled examples are unavailable and has the ability to 
identify potentially novel types of genomic elements.

Semi-supervised learning. The intermediate between 
supervised and unsupervised learning is semi-supervised  
learning22. In supervised learning, the algorithm receives 
as input a collection of data points, each with an asso-
ciated label, whereas in unsupervised learning the 
algorithm receives the data but no labels. The semi-
supervised setting is a mixture of these two approaches: 
the algorithm receives a collection of data points, but 
only a subset of these data points have associated labels. 
In practice, gene-finding systems are often trained 
using a semi-supervised approach, in which the input 
is a collection of annotated genes and an unlabelled 
whole-genome sequence. The learning procedure 
begins by constructing an initial gene-finding model 
on the basis of the labelled subset of the training data 
alone. Next, the model is used to scan the genome, and 
tentative labels are assigned throughout the genome. 
These tentative labels can then be used to improve 
the learned model, and the procedure iterates until no 
new genes are found. The semi-supervised approach 
can work much better than a fully supervised approach 
because the model is able to learn from a much larger 
set of genes — all of the genes in the genome — rather 
than only the subset of genes that have been identified 
with high confidence.

Which type of method to use. When faced with a new 
machine learning task, the first question to consider 
is often whether to use a supervised, unsupervised or 
semi-supervised approach. In some cases, the choice 
is limited; for example, if no labels are available, then 
only unsupervised learning is possible. However, when 
labels are available, a supervised approach is not always 
the best choice because every supervised learning 
method rests on the implicit assumption that the distri-
bution responsible for generating the training data set 
is the same as the distribution responsible for generat-
ing the test data set. This assumption will be respected 
if, for example, one takes a single labelled data set and 
randomly subdivides it into a training set and a testing 
set. However, it is often the case that the plan is to train 
an algorithm on a training set that is generated differ-
ently from the testing data to which the trained model  
will eventually be applied. A gene finder trained using 
a set of human genes will probably not perform very 
well at finding genes in the mouse genome. Often, 
the divergence between training and testing is less 
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Figure 2 | A gene-finding model.  A simplified gene-finding model that captures the 
basic properties of a protein-coding gene is shown. The model takes the DNA sequence 
of a chromosome, or a portion thereof, as input and produces detailed gene annotations 
as output. Note that this simplified model is incapable of identifying overlapping genes 
or multiple isoforms of the same gene. UTR, untranslated region.
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Prediction accuracy
The fraction of predictions that 
are correct. It is calculated by 
dividing the number of correct 
predictions by the total 
number of predictions.

Generative models
Machine learning models that 
build a full model of the 
distribution of features.

Discriminative models
Machine learning approaches 
that model only the 
distribution of a label when 
given the features.

Features
Single measurements or 
descriptors of examples used 
in a machine learning task.

Probabilistic framework
A machine learning approach 
based on a probability 
distribution over the labels  
and features.

Missing data
An experimental condition  
in which some features are 
available for some, but not  
all, examples.

obvious. For example, a TSS data set generated by cap 
analysis of gene expression (CAGE) will not contain 
non-polyadenylated genes23. If such genes also exhibit 
differences around the TSSs, then the resulting TSS 
predictor will be biased. In general, supervised learn-
ing should be used only when the training set and test 
set are expected to exhibit similar statistical properties.

When supervised learning is feasible and additional 
unlabelled data points are easy to obtain, one may con-
sider whether to use a supervised or semi-supervised 
approach. Semi-supervised learning requires making 
certain assumptions about the data set22 and, in practice, 
assessing these assumptions can often be very difficult. 
Therefore, a good rule of thumb is to use semi-supervised  
learning only when there are a small amount of labelled 
data and a large amount of unlabelled data.

Generative versus discriminative modelling
Applications of machine learning methods generally 
have one of two goals: prediction or interpretation. 
Consider the problem of predicting, on the basis of a 
ChIP–seq experiment, the locations at which a given 
transcription factor will bind to genomic DNA. This 
task is analogous to the TSS prediction task (FIG. 1), 
except that the labels are derived from ChIP–seq peaks. 
A researcher applying a machine learning method 
to this problem may either want to understand what 
properties of a sequence are the most important for 
determining whether a transcription factor will bind 
(that is, interpretation), or simply want to predict the 
locations of transcription factor binding as accurately 
as possible (that is, prediction). There are trade-offs 
between accomplishing these two goals — methods 
that optimize prediction accuracy often do so at the cost 
of interpretability.

The distinction between generative models and  
discriminative models plays a large part in the trade-off 
between interpretability and performance. The genera-
tive approach builds a full model of the distribution of 
features in each of the two classes and then compares 
how the two distributions differ from one another. By 
contrast, the discriminative approach focuses on accu-
rately modelling only the boundary between the two 
classes. From a probabilistic perspective, the discrimi-
native approach involves modelling only the conditional 
distribution of the label given the input feature data 
sets, as opposed to the joint distribution of the labels 
and features. Schematically, if we were to separate two 
groups of points in a 2D space (FIG. 3a), the generative 
approach builds a full model of each class, whereas the  
discriminative approach focuses only on separating  
the two classes. 

A researcher applying a generative approach to the 
transcription factor binding problem begins by con-
sidering what procedure could be used to generate 
the observed data. A widely used generative model of 
transcription factor binding uses a position-specific 
frequency matrix (PSFM) (FIG. 3b), in which a collec-
tion of aligned binding sites of width w are summarized 
in a 4 × w matrix (M) of frequencies, where the entry 
at position i,j represents the empirical frequency of 

observing the ith DNA base at position j. We can gener-
ate a random bound sequence according to this PSFM 
model by drawing w random numbers, each in the 
range [0,1〉. For the jth random number, we select the 
corresponding DNA base according to the frequencies 
in the jth column of the matrix. Conversely, scoring a 
candidate binding site using the model corresponds to 
computing the product of the corresponding frequen-
cies from the PSFM. This value is called the likelihood. 
Training a PSFM is simple — the empirical frequency 
of each nucleotide at each position simply needs to be 
computed.

A simple example of a discriminative algorithm is 
the support vector machine (SVM)24,25 (FIG. 3c), the goal 
of which is to learn to output a value of 1 whenever 
it is given a positive training example and a value of 
–1 whenever it is given a negative training example. 
In the transcription factor binding prediction prob-
lem, the input sequence of length w is encoded as a 
binary string of length 4w, and each bit corresponds to 
the presence or absence of a particular nucleotide at a  
particular position.

This generative modelling approach offers several 
compelling benefits. First, the generative description 
of the data implies that the model parameters have 
well-defined semantics relative to the generative pro-
cess. Accordingly, as shown in the example above, 
the model not only predicts the locations to which a 
given transcription factor binds but also explains why  
the transcription factor binds there. If we compare two 
different potential binding sites, we can see that the  
model prefers one site over another and also that  
the reason is, for example, the preference for an ade-
nine rather than a thymine at position 7 of the motif. 
Second, generative models are frequently stated in 
terms of probabilities, and the probabilistic framework 
provides a principled way to handle problems like 
missing data. For example, it is still possible for a PSFM 
to make a prediction for a binding site where one or 
more of the bound residues is unknown. This is accom-
plished by probabilistically averaging over the missing 
bases. The output of the probabilistic framework has 
well-defined, probabilistic semantics, and this can be 
helpful when making downstream decisions about how 
much to trust a given prediction.

In many cases, including the example of transcrip-
tion factor binding, the training data set contains a 
mixture of positive and negative examples. In a genera-
tive setting, these two groups of examples are modelled 
separately, and each has its own generative process. For 
instance, for the PSFM model, the negative (or back-
ground) model is often a single set (B) of nucleotide 
frequencies that represents the overall mean frequency 
of each nucleotide in the negative training examples. 
To generate a sequence of length w according to this 
model, we again generate w random numbers, but now 
each base is selected according to the frequencies in B. 
To use the foreground PSFM model together with the 
background model B, we compute a likelihood ratio 
that is simply the ratio of the likelihoods computed 
with respect to the PSFM and with respect to B.
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The primary benefit of the discriminative model-
ling approach is that it probably achieves better per-
formance than the generative modelling approach with 
infinite training data26,27. In practice, analogous gen-
erative and discriminative approaches often converge 
to the same solution, and generative approaches can 
sometimes perform better with limited training data. 
However, when the amount of labelled training data is  
reasonably large, the discriminative approach will  
tend to find a better solution, in the sense that  
it will predict the desired outcome more accurately 
when tested on previously unseen data (assuming that 
the data are from the same underlying distribution  
as the training data). To illustrate this phenomenon, 
we simulated data according to a simple PSFM model 
and trained a PSFM and an SVM, varying the number  
of training examples. To train a model with a width of  
19 nucleotides to discriminate between bound and 
unbound sites with 90% accuracy requires 8 training 
examples for a PSFM model and only 4 examples for 
an SVM model (FIG. 3d). This improvement in perfor-
mance is achieved because, by not attempting to accu-
rately characterize the simpler parts of the 2D space, 

the discriminative model performs better at solving the  
discrimination task at hand. Thus, empirically, the dis-
criminative approach will tend to give predictions that 
are more accurate.

However, the flipside of this accuracy is that by solv-
ing a single problem well, the discriminative approach 
fails to solve other problems at all. Specifically, because 
the internal parameters of a generatively trained model 
have well-defined semantics, we can use the model to 
ask various related questions, for example, not only 
whether CCCTC-binding factor (CTCF) bind to a 
particular sequence but also why does it bind to this 
sequence more tightly than to some other sequence. By 
contrast, the discriminative model only enables us to 
answer the single question for which it was designed. 
Thus, choosing between a generative and discrimi-
native model involves a trade-off between predictive 
accuracy and interpretability of the model. Although 
the distinction between generative and discriminative 
models plays a large part in determining the interpret-
ability of a model, the model’s complexity — that is, the 
number of parameters it has — can be just as impor-
tant. Models of either type that have a large number 
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Figure 3 | Two models of transcription factor binding.  a | Generative and discriminative models are different in their 
interpretability and prediction accuracy. If we were to separate two groups of points, the generative model characterizes 
both classes completely, whereas the discriminative model focuses on the boundary between the classes. b | In a 
position-specific frequency matrix (PSFM) model, the entry in row i and column j represents the frequency of the ith base 
occurring at position j in the training set. Assuming independence, the probability of the entire sequence is the product 
of the probabilities associated with each base. c | In a linear support vector machine (SVM) model of transcription factor 
binding, labelled positive and negative training examples (red and blue, respectively) are provided as input, and a 
learning procedure adjusts the weights on the edges to predict the given label. d | The graph plots the mean accuracy 
(±95% confidence intervals) of PSFM and SVM, on a set of 500 simulated test sets, of predicting transcription factor 
binding as a function of the number of training examples.
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Feature selection
The process of choosing a 
smaller set of features from  
a larger set, either before 
applying a machine learning 
method or as part of training.

Input space
A set of features chosen to be 
used as input for a machine 
learning method.

Uniform prior
A prior distribution for a 
Bayesian model that assigns 
equal probabilities to all 
models.

of parameters tend to be difficult to interpret but can 
generally achieve higher accuracy than models with 
few parameters if they are provided with enough data. 
The complexity of a model can be limited either by 
choosing a simple model or by using a feature selection 
strategy to restrict the complexity of the learned model.

Incorporating prior knowledge
In many applications, the success or failure of a 
machine learning method depends on the extent to 
which the method accurately encodes various types of 
prior knowledge about the problem at hand. Indeed, 
much of the practical application of machine learning 
involves understanding the details of a particular prob-
lem and then selecting an algorithmic approach that 
enables those details to be accurately encoded. There 
is no optimal machine learning algorithm that works 
best for all problems28, so the selection of an approach 
that matches the researcher’s prior knowledge about the 
problem is crucial to the success of the analysis.

Often, the encoding of prior knowledge is implicit 
in the framing of the machine learning problem. As 
an example, consider the prediction of nucleosome 
positioning from primary DNA sequence6. The labels 
for this prediction task can be derived, for example, 
from an MNase–seq assay. In this case, after appropri-
ate processing, each base is assigned an integer count  
of the number of nucleosome-sized fragments that 
cover the base. Therefore, it might seem natural to 
frame the problem as a regression, in which the input 
is, for example, a sequence of 201 bp and the output is 
the predicted coverage at the centre of the sequence. 
However, in practice, we may be particularly inter-
ested in identifying nucleosome-free regions. Hence, 
rather than asking the algorithm to solve the problem 
of predicting exact coverage at each base, we might 
instead opt to predict whether each base occurs in a 
nucleosome-free region. Switching from regression 
to classification makes the problem easier but, more 
importantly, this switch also encodes the prior knowl-
edge that regions of high MNase accessibility are of 
particular biological interest.

Implicit prior knowledge. In other cases, prior knowl-
edge is encoded implicitly in the choice of data that 
we provide as input to the machine learning algo-
rithm. For example, Yip et al.29 trained a collection 

of machine learning methods to distinguish among 
various types of genomic elements. Using chromatin 
data — DNase I accessibility and ChIP–seq profiles of 
histone modifications and transcription factor binding 
— one classifier distinguished regulatory regions that 
are close to a gene from regulatory regions that are far 
away from any gene. In this context, design of the input 
space (that is, the features that are provided as input 
to the classifier) is of crucial importance. In the work 
carried out by Yip et al.29, the features were computed 
by averaging over a 100‑bp window. The choice of a 
100‑bp window is likely to reflect the prior knowledge 
that, at least for histone modification data, the data are 
arguably only meaningful at approximately the scale 
of a single nucleosome (147 bp) or larger. Moreover, 
replacing a single averaged feature with 100 separate 
features may be problematic. By contrast, for DNase 
accessibility data, it is plausible that averaging over 
100 bp may remove some useful signal. Alternatively, 
prior knowledge may be implicitly encoded in the 
learning algorithm itself, in which some types of solu-
tions are preferred over others30. Therefore, in general, 
the choice of input data sets, their representations and 
any pre-processing must be guided by prior knowledge 
about data and application.

Probabilistic priors. In a probabilistic framework, 
some forms of prior knowledge can be represented 
explicitly by specifying a prior distribution over the 
data. A common prior distribution is the uniform prior 
(also known as ‘uninformative’ prior) which, despite 
the name, can be useful in some contexts. Consider, 
for example, a scenario in which we have gathered a 
collection of ten validated binding sites for a particu-
lar transcription factor (FIG. 4), and we observe that 
the sequences cluster around a clear consensus motif. 
If we represent these sequences using a pure PSFM 
then, because our data set is fairly small, a substan-
tial number of the entries in the PSFM will be zero. 
Consequently, the model will assign any sequence that 
contains one of these zero entries an overall proba-
bility of zero, even if the sequence otherwise exactly 
matches the motif. This is counter-intuitive. The solu-
tion to this problem is to encode the prior knowledge 
that every possible DNA sequence has the potential to 
be bound by a given transcription factor. The result 
is that even sequences containing nucleotides that we 
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Dirichlet mixture priors
Prior distributions for a 
Bayesian model over the 
relative frequencies of, for 
example, amino acids.

Kernel methods
A class of machine learning 
methods (for example, support 
vector machine) that use a 
type of similarity measure 
(called a kernel) between 
feature vectors.

have never observed in a given position can still be 
assigned a non-zero probability by the model.

In many probability models, much more sophis-
ticated priors have been developed to capture more-
complex prior knowledge. A particularly successful 
example is the use of Dirichlet mixture priors in protein 
modelling31. In this example, the idea is that if we are 
examining an alignment of protein sequences and if we 
see many aligned leucines in a particular column, then, 
because we know that leucine and valine are biochemi-
cally similar, we may want to assign a high probability 
to sequences that contain a valine in that same column, 
even if we have never seen a valine there in our train-
ing data. The name Dirichlet mixture refers to the fact 
that the prior distribution is represented as a Dirichlet 
distribution, and that the distribution is a mixture in 
which each component corresponds to a group of bio-
chemically similar amino acids. Such priors lead to 
substantially improved performance both in the mod-
elling of evolutionarily related families of proteins31 and 
in the discovery of protein motifs32.

Prior information in non-probabilistic models. By 
contrast, the incorporation of prior knowledge into 
non-probabilistic methods can be more challenging. 
For example, discriminative classifiers, such as artifi-
cial neural networks (ANNs) or random forests, do not 
provide any explicit mechanism for representing prior 

knowledge. The topology of a multilayer ANN can rep-
resent information about dependencies between input 
features in the input space, but more general priors  
cannot be represented.

One class of discriminative methods does provide a 
more general mechanism for representing prior knowl-
edge, if that knowledge can be encoded into a general-
ized notion of similarity. Kernel methods are algorithms 
that use a general class of mathematical functions 
called kernels in place of a simple similarity func-
tion (specifically, the cosine of the angle between two  
input vectors)33. The ‘flagship’ kernel method is 
the SVM classifier, which has been widely used in 
many fields, including biological applications rang-
ing from DNA and protein sequence classification to 
mass spectrometry analysis25. Other methods that can 
use kernels include support vector regression as well as 
classical algorithms such as k‑means clustering, prin-
cipal component analysis and hierarchical clustering. 
Prior knowledge can be provided to a kernel method 
by selecting or designing an appropriate kernel func-
tion. For example, a wide variety of kernels can be 
defined between pairs of DNA sequences, in which the 
similarity can be based on shared k‑mers irrespective of 
their positions within the sequences34, on nucleotides 
occurring at particular positions35 or on a mixture of 
the two36. A DNA sequence can even encode a simple 
model of molecular evolution, using algorithms that 
are similar to the Smith–Waterman alignment algo-
rithm37. Furthermore, the Fisher kernel provides a 
general framework for deriving a kernel function from 
any probability model38. In this way, formal probabil-
istic priors can be used in conjunction with any kernel 
method. Kernel methods have a rich literature, which 
is reviewed in more detail in REF. 39.

Handling heterogeneous data
Another common challenge in learning from real bio-
logical data is that the data themselves are heterogene-
ous. For example, consider the problem of learning to 
assign Gene Ontology terms to genes. For a given term, 
such as ‘cytoskeleton-dependent intracellular transport’, 
a wide variety of data types might be relevant, includ-
ing the amino acid sequence of the protein encoded 
by the gene; the inferred evolutionary relationships of 
that protein to other proteins across various species; 
the microarray or RNA-seq expression profile of the 
gene across a variety of phenotypic or environmental 
conditions; and the number and identity of neigh-
bouring proteins identified using yeast two-hybrid or 
tandem affinity purification tagging experiments, or 
GFP-tagged microscopy images (FIG. 5). Such data sets 
are difficult to analyse jointly because of their hetero-
geneity: an expression profile is a fixed-length vector of 
real values; protein–protein interaction information is 
a binary network; and protein sequences are of variable 
lengths and are made up of a discrete ‘alphabet’. Many 
statistical and machine learning methods for classifi-
cation assume that all of the data can be represented 
as fixed-length vectors of real numbers. Such methods 
cannot be directly applied to heterogeneous data.
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Bayesian network
A representation of a 
probability distribution that 
specifies the structure of 
dependencies between 
variables as a network.

The most straightforward way to solve this problem 
is to transform each type of data into vector format 
before processing (FIG. 5a). For example, this was the 
approach taken by Peña-Castillo et al.40 in an assess-
ment of methods for predicting gene function in mice. 
Participating research groups were provided with sepa-
rate matrices, each representing a single type of data: 
gene expression, sequence patterns, protein–protein 
interactions, phenotypes, conservation profiles or dis-
ease associations. All matrices shared a common set of  
rows (one per gene), but the number and meanings  
of the columns differed from one matrix to the next. For 
example, gene expression data were represented directly, 
whereas protein sequence data were represented indi-
rectly through annotations from repositories such as 
Pfam41 and InterPro42, and protein–protein interac-
tions were represented as square matrices in which  
entries were the shortest-path lengths between genes.

Alternatively, each type of data can be encoded 
using a kernel function (FIG. 5b), with one kernel for 
each data type. Mathematically, the use of kernels is 
formally equivalent to transforming each data type into 
a fixed-length vector; however, in the kernel approach 
the vectors themselves are not always represented 
explicitly. Instead, the similarity between two data ele-
ments — such as amino acid sequences or nodes in 
a protein–protein interaction network — is encoded 
in the kernel function. The kernel framework ena-
bles more-complex kernels to be defined from com-
binations of simple kernels. For example, a simple 
summation of all the kernels for a given pair of genes 
is itself a kernel function. Furthermore, the kernels 
themselves can encode prior knowledge by, for exam-
ple, allowing for statistical dependencies within a given 
data type but not between data types43. Kernels also 
provide a general framework for automatically learning 
the relative importance of each type of data relative to 
a given classification task44.

Finally, probability models provide a very differ-
ent method for handling heterogeneous data. Rather 
than forcing all the data into a vector representation 
or requiring that all data be represented using pair-
wise similarities, a probability model explicitly repre-
sents diverse data types in the model itself (FIG. 5c). An 
early example of this type of approach assigned gene 
functional labels to yeast genes on the basis of gene 
expression profiles; physical associations from affinity 
purification, two-hybrid and direct binding measure-
ments; and genetic associations from synthetic lethal-
ity experiments45. The authors used a Bayesian network, 
which is a formal graphical language for representing 
the joint probability distribution over a set of random 
variables46. Querying the network with respect to the 
variable representing a particular Gene Ontology label 
yields the probability that a given gene is assigned that 
label. In principle, the probabilistic framework enables 
a Bayesian network to represent any arbitrary data type 
and carry out joint inference over heterogeneous data 
types using a single model.

In practice, such inference can be challenging 
because a joint probability model over heterogeneous 

data may contain a very large number of trainable 
parameters. Therefore, an alternative method for han-
dling heterogeneous data in a probability model is to 
make use of the general probabilistic mechanism for 
handling prior knowledge by treating one type of data 
before another. For example, as discussed above, pre-
dicting the location on a genome sequence to which 
a particular transcription factor will bind can be 
framed as a classification problem and solved using a 
PSFM. However, in vivo, the binding of a transcrip-
tion factor depends not only on the native affinity of 
the transcription factor for a given DNA sequence but 
also on the competitive binding of other molecules. 
Accordingly, measurements of chromatin accessibility, 
as provided by assays such as DNase-seq47, can offer 
valuable information about the overall accessibility of 
a given genomic locus to transcription factor binding. 
A joint probability model can take this accessibility into 
account48,49, but training such a model can be challeng-
ing. The alternative approach uses the DNase-seq data 
to create a probabilistic prior and applies this prior  
during the scanning of the PSFM50.

Feature selection
In any application of machine learning methods, the 
researcher must decide what data to provide as input 
to the algorithm. As noted above, this choice provides 
a method for incorporating prior knowledge into the 
procedure because the researcher can decide which 
features of the data are likely to be relevant or irrel-
evant. For example, consider the problem of training 
a multiclass classifier to distinguish, on the basis of 
gene expression measurements, among different types 
of cancers51. Such a classifier could be valuable in two 
ways. First, the classifier itself could help to establish 
accurate diagnoses in cases of atypical presentation or 
histopathology. Second, the model produced during 
the learning phase could perform feature selection, 
thus identifying subsets of genes with expression pat-
terns that contribute specifically to different types of 
cancer. In general, feature selection can be carried out 
within any supervised learning algorithm, in which 
the algorithm is given a large set of features (or input 
variables) and then automatically makes a decision to 
ignore some or all of the features, focusing on the sub-
set of features that are most relevant to the task at hand.

In practice, it is important to distinguish among 
three distinct motivations for carrying out feature 
selection. First, in some cases, we want to identify a 
very small set of features that yield the best possible 
classifier. For example, we may want to produce an 
inexpensive way to identify a disease phenotype on the 
basis of the measured expression levels of a handful of 
genes. Such a classifier, if it is accurate enough, might 
form the basis of an inexpensive clinical assay. Second, 
we may want to use the classifier to understand the 
underlying biology52–54. In this case, we want the fea-
ture selection procedure to identify only the genes with 
expression levels that are actually relevant to the task 
at hand in the hope that the corresponding functional 
annotations or biological pathways might provide 
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Curse of dimensionality
The observation that analysis 
can sometimes become more 
difficult as the number of 
features increases, particularly 
because overfitting becomes 
more likely.

Overfitting
A common pitfall in machine 
learning analysis that occurs 
when a complex model is 
trained on too few data points 
and becomes specific to the 
training data, resulting in poor 
performance on other data.

Label skew
A phenomenon in which two 
labels in a supervised learning 
problem are present at 
different frequencies.

Sensitivity
(Also known as recall). The 
fraction of positive examples 
identified; it is given by the 
number of positive predictions 
that are correct divided by the 
total number of positive 
examples.

Precision
The fraction of positive 
predictions that are correct;  
it is given by the number of 
positive predictions that are 
correct divided by the total 
number of positive predictions.

Precision-recall curve
For a binary classifier applied 
to a given data set, a curve that 
plots precision (y axis) versus 
recall (x axis) for a variety of 
classification thresholds.

insights into the aetiology of disease. Third, we often 
simply want to train the most accurate possible classi-
fier55. In this case, we hope that the feature selection 
enables the classifier to identify and eliminate noisy or 
redundant features. Researchers are often disappointed 
to find that feature selection cannot optimally perform 
more than one of these three tasks simultaneously.

Feature selection is especially important in the third 
case because the analysis of high-dimensional data sets, 
including genomic, epigenomic, proteomic or metabo-
lomic data sets, suffers from the curse of dimensionality56 
— the general observation that many types of analysis 
become more difficult as the number of input dimen-
sions (that is, data measurements) grows very large. For 
example, as the number of data features that are pro-
vided as input to a machine learning classifier grows, 
it is increasingly likely that, by chance, one feature 
perfectly separates the training examples into positive 
and negative classes. This phenomenon leads to good 
performance on the training data but poor generaliza-
tion to data that were not used in training owing to  
overfitting of the model to the training data. Feature 
selection methods and dimensionality reduction tech-
niques, such as principal component analysis or mul-
tidimensional scaling, aim to solve this problem by 
projecting the data from higher to lower dimensions.

Imbalanced class sizes
A common stumbling block in many applications of 
machine learning to genomics is the large imbalance 
(or label skew) in the relative sizes of the groups being 
classified. For example, suppose one is trying to use a 
discriminative machine learning method to predict the 
locations of enhancers in the genome. Starting with a 
set of 641 known enhancers, the genome can be broken 
up into 1,000‑bp segments and each segment assigned 
a label (‘enhancer’ or ‘not enhancer’) on the basis of 
whether it overlaps with a known enhancer. This pro-
cedure produces 1,711 positive examples and around 
3,000,000 negative examples — 2,000 times as many 
negative examples as positive examples. Unfortunately, 
most software cannot handle 3,000,000 examples.

The most straightforward solution to this prob-
lem is to select a random, smaller subset of the data. 
However, in the case of enhancer prediction, selecting 
50,000 examples at random results in 49,971 negative 
examples and only 28 positive examples. This number 
of positive examples is far too small to train an accurate 
classifier. To demonstrate this problem, we simulated 
93 noisy ChIP–seq assays using a Gaussian model for 
enhancers and background positions based on data 
produced by the ENCODE Consortium57. We trained 
a logistic regression classifier to distinguish between 
enhancers and non-enhancers on the basis of these 
data. The overall accuracy of the predictions (that is, 
the percentage of predictions that were correct) was 
99.9%. Although this seems good, accuracy is not an 
appropriate measure with which to evaluate perfor-
mance in this setting because a null classifier that sim-
ply predicts everything to be non-enhancers achieves 
nearly the same accuracy.

In this context, it is more appropriate to separately 
evaluate sensitivity (that is, the fraction of enhanc-
ers detected) and precision (that is, the percentage of 
predicted enhancers that are truly enhancers). The 
balanced classifier described above has a high preci-
sion (>99.9%) but a very low sensitivity of 0.5%. The 
behaviour of the classifier can be improved by using all 
of the enhancers for training and then picking a ran-
dom set of 49,000 non-enhancer positions as negative 
training examples. However, balancing the classes in 
this way results in the classifier learning to reproduce 
this artificially balanced ratio. The resulting classifier 
achieves much higher sensitivity (81%) but very poor 
precision (40%); thus, this classifier is not useful for 
finding enhancers that can be validated experimentally.

It is possible to trade off sensitivity and precision 
while retaining the training power of a balanced train-
ing set by placing weights on the training examples. In 
the case of enhancer prediction, we used the balanced 
training set, but during training we weighted each neg-
ative example 36 times more than a positive example. 
Doing so results in an excellent sensitivity of 53% with 
a precision of 95%.

In general, the most appropriate performance meas-
ure depends on the intended application of the classi-
fier. For problems such as identifying which tissue a 
given cell comes from, it may be equally important to 
identify rare and abundant tissues, and so the overall 
number of correct predictions may be the most inform-
ative measure of performance. In other problems, such 
as enhancer detection, predictions in one class may be 
more important than predictions in another. For exam-
ple, if positive predictions will be published, the most 
appropriate measure may be the sensitivity among a 
set of predictions with a predetermined precision (for 
example, 95%). A wide variety of performance meas-
ures are used in practice, including the F1 measure, 
the receiver operating characteristic curve and the  
precision-recall curve58,59, among others60. Machine learn-
ing classifiers perform best when they are optimized for 
a realistic performance measure.

Handling missing data
Machine learning analysis can often be complicated by 
missing data values. Missing values can come from vari-
ous sources, such as defective cells in a gene expression 
microarray, ‘unmappable’ genome positions in a func-
tional genomic assay or measurements that are unre-
liable because they saturate the detection limits of an 
instrument. Missing data values can be divided into two 
types: values that are missing at random or for reasons 
that are unrelated to the task at hand (such as defec-
tive microarray cells), and values that, when absent, 
provide information about the task at hand (such as 
saturated detectors). The presence or absence of values 
of the latter type is usually best incorporated directly 
into the model.

The simplest way to deal with data that are miss-
ing at random is to impute the missing values61. This 
can be done either with a very simple strategy, such as 
replacing all of the missing values with zero, or with a 
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Marginalization
A method for handling missing 
data points by summing over 
all possibilities for that random 
variable in the model.

Transitive relationships
An observed correlation 
between two features that is 
caused by direct relationships 
between these two features 
and a third feature.

more sophisticated strategy. For example, Troyanskaya 
et al.62 used the correlations between data values to 
impute missing microarray values. For each target gene 
expression profile, the authors found the 10 expres-
sion profiles showing the greatest similarity to the 
target profile, and they replaced each missing value in 
the target profile with an average of the values in the 
similar profiles. Imputing data points this way can be 
used as a pre-processing step for any other analysis, 
but downstream analyses are ‘blind’ to this information 
and cannot make use of either the fact that a data point 
is missing or the added uncertainty that results from 
missing data values.

Another method for dealing with missing data is to 
include in the model information about the ‘missing-
ness’ of each data point. For example, Kircher et al.63 
aimed to predict the deleteriousness of mutations based 
on functional genomic data. The functional genomic 
data provided a feature vector associated with each 
mutation, but some of these features were missing. 
Therefore, for each feature, the authors added a Boolean 
feature that indicated whether the corresponding fea-
ture value was present. The missing values themselves 
were then replaced with zeroes. A sufficiently sophis-
ticated model will be able to learn the pattern that 
determines the relationship between the feature and 
the presence or absence indicator. An advantage of this 
approach to handling missing data is that it is applica-
ble regardless of whether the absence of a data point is 
significant — if it is not, the model will learn to ignore 
the absence indicator.

Finally, probability models can explicitly model 
missing data by considering all the potential miss-
ing values. For example, this approach was used by 
Hoffman et al.21 to analyse functional genomic data, 
which contain missing values due to ‘mappability’ 
issues from short-read sequencing data. The probabil-
ity model provides an annotation by assigning a label 
to each position across the genome and modelling the 

probability of observing a certain value given this label. 
Missing data points are handled by summing over all 
possibilities for that random variable in the model. This 
approach, called marginalization, represents the case in 
which a particular variable is unobserved. However, 
marginalization is only appropriate when data points 
are missing for reasons that are unrelated to the task at 
hand. When the presence or absence of a data point is 
likely to be correlated with the values themselves, incor-
porating presence or absence explicitly into the model 
is more appropriate.

Modelling dependence among examples
So far, we have focused on machine learning tasks that 
involve sets of independent instances of a common 
pattern. However, in some domains, individual enti-
ties, such as genes, are not independent, and the rela-
tionships among them are important. By inferring such 
relationships, it is possible to integrate many examples 
into a meaningful network. Such a network might rep-
resent physical interactions among proteins, regula-
tory interactions between genes or symbiosis between 
microorganisms. Networks are useful both for under-
standing the biological relationships between entities 
and as input into a downstream analysis that makes use 
of these relationships.

The most straightforward way to infer the relation-
ships among examples is to consider each pair indepen-
dently. In this case, the problem of network learning is 
reduced to a normal machine learning problem, defined 
on pairs of individuals rather than individual examples. 
Qiu et al.64 used an SVM classifier to predict, using data 
such as protein sequences and cellular localization, 
whether a given pair of proteins physically interact.

A downside of any approach that considers each 
relationship independently is that such methods can-
not take into account the confounding effects of indirect 
relationships (FIG. 6). For example, in the case of gene 
regulation, an independent model cannot infer whether 
a pair of genes directly regulate each other or whether 
they are both regulated by a third gene. Such spurious 
inferred relationships, called transitive relationships, can 
be removed by methods that infer the graph as a whole. 
For example, Friedman et al.65 inferred a Bayesian net-
work on gene expression data that models which genes 
regulate each other. Such a network includes only 
direct effects and models indirect correlations through 
multiple-hop paths in the network. Therefore, methods 
that infer a network as a whole are more biologically 
interpretable because they remove these indirect cor-
relations; a large number of such methods have been 
described and reviewed elsewhere66,67.

Conclusions
On the one hand, machine learning methods, which are 
most effective in the analysis of large, complex data sets, 
are likely to become ever more important to genomics as 
more large data sets become available through interna-
tional collaborative projects, such as the 1000 Genomes 
Project, the 100,000 Genomes Project, ENCODE, the 
Roadmap Epigenomics Project and the US National 
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Figure 6 | Inferring network structure.  Methods that 
infer each relationship in a network separately, such as by 
computing the correlation between each pair, can be 
confounded by indirect relationships. Methods that infer 
the network as a whole can identify only direct 
relationships. Inferring the direction of causality inherent 
in networks is generally more challenging than inferring 
the network structure68; as a result, many network 
inference methods, such as Gaussian graphical model 
learning, infer only the network.
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