
The field of machine learning is concerned with the
development and application of computer algorithms
that improve with experience1. Machine learning meth-
ods have been applied to a broad range of areas within
genetics and genomics. Machine learning is perhaps
most useful for the interpretation of large genomic
data sets and has been used to annotate a wide variety
of genomic sequence elements. For example, machine
learning methods can be used to ‘learn’ how to rec-
ognize the locations of transcription start sites (TSSs)
in a genome sequence2. Algorithms can similarly be
trained to identify splice sites3, promoters4, enhancers5
or positioned nucleosomes6. In general, if one can com-
pile a list of sequence elements of a given type, then a
machine learning method can probably be trained to
recognize those elements. Furthermore, models that
each recognize an individual type of genomic element
can be combined, along with (learned) logic about
their relative locations, to build machine learning sys-
tems that are capable of annotating genes — includ-
ing their untranslated regions (UTRs), introns and
exons — along entire eukaryotic chromosomes7.

As well as learning to recognize patterns in DNA
sequences, machine learning algorithms can use input
data generated by other genomic assays — for example,
microarray or RNA sequencing (RNA-seq) expression
data; data from chromatin accessibility assays such as
DNase I hypersensitive site sequencing (DNase-seq),
micrococcal nuclease digestion followed by sequencing
(MNase–seq) and formaldehyde-assisted isolation of

regulatory elements followed by sequencing (FAIRE–
seq); or chromatin immunoprecipitation followed by
sequencing (ChIP–seq) data of histone modification or
transcription factor binding. Gene expression data can
be used to learn to distinguish between different dis-
ease phenotypes and, in the process, to identify poten-
tially valuable disease biomarkers. Chromatin data
can be used, for example, to annotate the genome in
an unsupervised manner, thereby potentially enabling
the identification of new classes of functional elements.

Machine learning applications have also been exten-
sively used to assign functional annotations to genes.
Such annotations most frequently take the form of
Gene Ontology term assignments8. Input of predictive
algorithms can be any one or more of a wide variety
of data types, including the genomic sequence; gene
expression profiles across various experimental condi-
tions or phenotypes; protein–protein interaction data;
synthetic lethality data; open chromatin data; and
ChIP–seq data of histone modification or transcrip-
tion factor binding. As an alternative to Gene Ontology
term prediction, some predictors instead identify
co‑functional relationships, in which the machine
learning method outputs a network in which genes are
represented as nodes and an edge between two genes
indicates that they have a common function9.

Finally, a wide variety of machine learning methods
have been developed to help to understand the mecha-
nisms underlying gene expression. Some techniques
aim to predict the expression of a gene on the basis of

1Department of Computer
Science and Engineering,
University of Washington,
185 Stevens Way, Seattle,
Washington 98195–2350,
USA.
2Department of Genome
Sciences, University of
Washington, 3720 15th Ave
NE Seattle, Washington
98195–5065, USA.
Correspondence to W.S.N.
e‑mail: william-noble@uw.edu
doi:10.1038/nrg3920
Published online 7 May 2015

Machine learning
A field concerned with the
development and application
of computer algorithms that
improve with experience.

Machine learning applications in
genetics and genomics
Maxwell W. Libbrecht1 and William Stafford Noble1,2

Abstract | The field of machine learning, which aims to develop computer algorithms
that improve with experience, holds promise to enable computers to assist humans in
the analysis of large, complex data sets. Here, we provide an overview of machine
learning applications for the analysis of genome sequencing data sets, including the
annotation of sequence elements and epigenetic, proteomic or metabolomic data. We
present considerations and recurrent challenges in the application of supervised,
semi-supervised and unsupervised machine learning methods, as well as of generative
and discriminative modelling approaches. We provide general guidelines to assist in
the selection of these machine learning methods and their practical application for the
analysis of genetic and genomic data sets.

REVIEWS

NATURE REVIEWS | GENETICS	 VOLUME 16 | JUNE 2015 | 321

© 2015 Macmillan Publishers Limited. All rights reserved

mailto:william-noble@uw.edu

Artificial intelligence
A field concerned with the
development of computer
algorithms that replicate
human skills, including learning,
visual perception and natural
language understanding.

Heterogeneous data sets
A collection of data sets
from multiple sources or
experimental methodologies.
Artefactual differences
between data sets can
confound analysis.

Likelihood
The probability of a data set
given a particular model.

Label
The target of a prediction task.
In classification, the label is
discrete (for example,
‘expressed’ or ’not expressed’);
in regression, the label is of real
value (for example, a gene
expression value).

Examples
Data instances used in a
machine learning task.

Supervised learning
Machine learning based on an
algorithm that is trained on
labelled examples and used to
predict the label of unlabelled
examples.

the DNA sequence alone10, whereas others take into
account ChIP–seq profiles of histone modification11
or transcription factor binding12 at the gene promoter
region. More sophisticated methods attempt to jointly
model the expression of all of the genes in a cell by
training a network model13. Like a co‑functional net-
work, each node in a gene expression network denotes
a gene; however, edges in this case represent, for exam-
ple, the regulatory relationships between transcription
factors and their targets.

Many of the problems listed above can also be solved
using techniques from the field of statistics. Indeed, the
line between machine learning and statistics is at best
blurry, and some prefer the term statistical learning over
machine learning14. Historically, the field of machine
learning grew out of the artificial intelligence commu-
nity, in which the term ‘machine learning’ became
popular in the late 1990s. In general, machine learning
researchers have tended to focus on a subset of prob-
lems within statistics, emphasizing in particular the
analysis of large heterogeneous data sets. Accordingly,
many core statistical concepts — such as the cali-
bration of likelihood estimates, statistical confidence
estimations and power calculations — are essentially
absent from the machine learning literature.

Here, we provide an overview of machine learning
applications in genetics and genomics. We discuss the
main categories of machine learning methods and
the key considerations that must be made when apply-
ing these methods to genomics. We do not attempt
to catalogue all machine learning methods or all
reported applications of machine learning to genom-
ics, nor do we discuss any particular method in great
detail. Instead, we begin by explaining several key
distinctions in the main types of machine learning

and then outlining some of the major challenges in
applying machine learning methods to practical prob-
lems in genomics. We provide an overview of the
type of research questions for which machine learn-
ing approaches are appropriate and advise on how to
select the type of methods that are likely to be effec-
tive. A more detailed discussion of machine learning
applied to particular subfields of genetics and genomics
is available elsewhere15–18.

Stages of machine learning
Machine learning methods proceed through three
stages (FIG. 1). As an example, we consider an applica-
tion to identify the locations of TSSs within a whole-
genome sequence2. First, a machine learning researcher
develops an algorithm that he or she believes will lead
to successful learning. Second, the algorithm is pro-
vided with a large collection of TSS sequences as well
as, optionally, a list of sequences that are known not to
be TSSs. The annotation indicating whether a sequence
is a TSS is known as the label. The algorithm processes
these labelled sequences and stores a model. Third, new
unlabelled sequences are given to the algorithm, and it
uses the model to predict labels (in this case, ‘TSS’ or
‘not TSS’) for each sequence. If the learning was suc-
cessful, then all or most of the predicted labels will be
correct. If the labels associated with test set examples are
known — that is, if these examples were excluded from
the training set because they were intended to be used
to test the performance of the learning system — then
the performance of the machine learning algorithm
can be assessed immediately. Otherwise, in a prospec-
tive validation setting, the TSS predictions produced
by the machine learning system must be tested inde-
pendently in the laboratory. Note that this is an exam-
ple of a subtype of machine learning called supervised
learning, which is described in more detail in the next sec-
tion. This process of algorithm design, learning and test-
ing is simultaneously analogous to the scientific method
on two different levels. First, the design–learn–test
process provides a principled way to test a hypothesis
about machine learning: for example, algorithm X can
successfully learn to recognize TSSs. Second, the algo-
rithm itself can be used to generate hypotheses: for
example, sequence Y is a TSS. In the latter setting, the
resulting scientific theory is instantiated in the model
produced by the learning algorithm. In this case, a key
question, which we return to below, is whether and how
easily a human can interpret this model.

Supervised versus unsupervised learning
Machine learning methods can usefully be segregated
into two primary categories: supervised or unsupervised
learning methods. Supervised methods are trained
on labelled examples and then used to make predic-
tions about unlabelled examples, whereas unsuper-
vised methods find structure in a data set without
using labels. To illustrate the difference, consider
again gene-finding algorithms, which use the DNA
sequence of a chromosome as input to predict the
locations and detailed intron–exon structure of all of

Nature Reviews | Genetics

Model

Machine
learning
algorithm

Training set

Labels Data (‘features’)

1.
2.
3.
4.
5.
6.
7.
8.

1. Not TSS
2. TSS
3. TSS
4. Not TSS
5. Not TSS
6. TSS
7. Not TSS
8. TSS

TSS
TSS
TSS
TSS
Not TSS
Not TSS
Not TSS
Not TSS

Testing set

Predicted
labels

Prediction
algorithm

Figure 1 | A canonical example of a machine learning application. A training set of
DNA sequences is provided as input to a learning procedure, along with binary labels
indicating whether each sequence is centred on a transcription start site (TSS) or not. The
learning algorithm produces a model that can then be subsequently used, in conjunction
with a prediction algorithm, to assign predicted labels (such as ‘TSS’ or ‘not TSS’) to
unlabelled test sequences. In the figure, the red–blue gradient might represent, for
example, the scores of various motif models (one per column) against the DNA sequence.

R E V I E W S

322 | JUNE 2015 | VOLUME 16	 www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

Unsupervised learning
Machine learning based on an
algorithm that does not require
labels, such as a clustering
algorithm.

Semi-supervised learning
A machine-learning method
that requires labels but that
also makes use of unlabelled
examples.

the protein-coding genes on the chromosome (FIG. 2).
The most straightforward way to do so is to use what
is already known about the genome to help to build a
predictive model. In particular, a supervised learning
algorithm for gene finding requires as input a training
set of labelled DNA sequences specifying the locations
of the start and end of the gene (that is, the TSS and the
transcription termination site, respectively), as well as
all of the splice sites in between these sites. The model
then uses this training data to learn the general proper-
ties of genes, such as the DNA sequence patterns that
typically occur near a donor or an acceptor splice site;
the fact that in‑frame stop codons should not occur
within coding exons; and the expected length distribu-
tions of 5ʹ and 3ʹ UTRs and of initial, internal and final
introns. The trained model can then use these learned
properties to identify additional genes that resemble
the genes in the training set.

When a labelled training set is not available,
unsupervised learning is required. For example, con-
sider the interpretation of a heterogeneous collec-
tion of epigenomic data sets, such as those generated
by the Encyclopedia of DNA Elements (ENCODE)
Consortium and the Roadmap Epigenomics Project.
A priori, we expect that the patterns of chromatin acces-
sibility, histone modifications and transcription factor
binding along the genome should be able to provide a
detailed picture of the biochemical and functional activ-
ity of the genome. We may also expect that these activi-
ties could be accurately summarized using a fairly small
set of labels. If we are interested in discovering what
types of label best explain the data, rather than imposing

a pre-determined set of labels on the data, then we must
use unsupervised rather than supervised learning. In
this type of approach, the machine learning algorithm
uses only the unlabelled data and the desired number of
different labels to assign as input19–21; it then automati-
cally partitions the genome into segments and assigns
a label to each segment, with the goal of assigning the
same label to segments that have similar data. The unsu-
pervised approach requires an additional step in which
semantics must be manually assigned to each label,
but it provides the benefits of enabling training when
labelled examples are unavailable and has the ability to
identify potentially novel types of genomic elements.

Semi-supervised learning. The intermediate between
supervised and unsupervised learning is semi-supervised
learning22. In supervised learning, the algorithm receives
as input a collection of data points, each with an asso-
ciated label, whereas in unsupervised learning the
algorithm receives the data but no labels. The semi-
supervised setting is a mixture of these two approaches:
the algorithm receives a collection of data points, but
only a subset of these data points have associated labels.
In practice, gene-finding systems are often trained
using a semi-supervised approach, in which the input
is a collection of annotated genes and an unlabelled
whole-genome sequence. The learning procedure
begins by constructing an initial gene-finding model
on the basis of the labelled subset of the training data
alone. Next, the model is used to scan the genome, and
tentative labels are assigned throughout the genome.
These tentative labels can then be used to improve
the learned model, and the procedure iterates until no
new genes are found. The semi-supervised approach
can work much better than a fully supervised approach
because the model is able to learn from a much larger
set of genes — all of the genes in the genome — rather
than only the subset of genes that have been identified
with high confidence.

Which type of method to use. When faced with a new
machine learning task, the first question to consider
is often whether to use a supervised, unsupervised or
semi-supervised approach. In some cases, the choice
is limited; for example, if no labels are available, then
only unsupervised learning is possible. However, when
labels are available, a supervised approach is not always
the best choice because every supervised learning
method rests on the implicit assumption that the distri-
bution responsible for generating the training data set
is the same as the distribution responsible for generat-
ing the test data set. This assumption will be respected
if, for example, one takes a single labelled data set and
randomly subdivides it into a training set and a testing
set. However, it is often the case that the plan is to train
an algorithm on a training set that is generated differ-
ently from the testing data to which the trained model
will eventually be applied. A gene finder trained using
a set of human genes will probably not perform very
well at finding genes in the mouse genome. Often,
the divergence between training and testing is less

Nature Reviews | Genetics

GCCTGGGAAAACCCTCAACTTT...

Input: genomic DNA sequence

Output: gene annotation

Gene model

5′ UTR Initial
exon

Internal
intron

Non-
coding

Internal
exon

Final
exon

5′ UTR

Figure 2 | A gene-finding model.  A simplified gene-finding model that captures the
basic properties of a protein-coding gene is shown. The model takes the DNA sequence
of a chromosome, or a portion thereof, as input and produces detailed gene annotations
as output. Note that this simplified model is incapable of identifying overlapping genes
or multiple isoforms of the same gene. UTR, untranslated region.

R E V I E W S

NATURE REVIEWS | GENETICS	 VOLUME 16 | JUNE 2015 | 323

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.encodeproject.org
http://www.roadmapepigenomics.org

Prediction accuracy
The fraction of predictions that
are correct. It is calculated by
dividing the number of correct
predictions by the total
number of predictions.

Generative models
Machine learning models that
build a full model of the
distribution of features.

Discriminative models
Machine learning approaches
that model only the
distribution of a label when
given the features.

Features
Single measurements or
descriptors of examples used
in a machine learning task.

Probabilistic framework
A machine learning approach
based on a probability
distribution over the labels
and features.

Missing data
An experimental condition
in which some features are
available for some, but not
all, examples.

obvious. For example, a TSS data set generated by cap
analysis of gene expression (CAGE) will not contain
non-polyadenylated genes23. If such genes also exhibit
differences around the TSSs, then the resulting TSS
predictor will be biased. In general, supervised learn-
ing should be used only when the training set and test
set are expected to exhibit similar statistical properties.

When supervised learning is feasible and additional
unlabelled data points are easy to obtain, one may con-
sider whether to use a supervised or semi-supervised
approach. Semi-supervised learning requires making
certain assumptions about the data set22 and, in practice,
assessing these assumptions can often be very difficult.
Therefore, a good rule of thumb is to use semi-supervised
learning only when there are a small amount of labelled
data and a large amount of unlabelled data.

Generative versus discriminative modelling
Applications of machine learning methods generally
have one of two goals: prediction or interpretation.
Consider the problem of predicting, on the basis of a
ChIP–seq experiment, the locations at which a given
transcription factor will bind to genomic DNA. This
task is analogous to the TSS prediction task (FIG. 1),
except that the labels are derived from ChIP–seq peaks.
A researcher applying a machine learning method
to this problem may either want to understand what
properties of a sequence are the most important for
determining whether a transcription factor will bind
(that is, interpretation), or simply want to predict the
locations of transcription factor binding as accurately
as possible (that is, prediction). There are trade-offs
between accomplishing these two goals — methods
that optimize prediction accuracy often do so at the cost
of interpretability.

The distinction between generative models and
discriminative models plays a large part in the trade-off
between interpretability and performance. The genera-
tive approach builds a full model of the distribution of
features in each of the two classes and then compares
how the two distributions differ from one another. By
contrast, the discriminative approach focuses on accu-
rately modelling only the boundary between the two
classes. From a probabilistic perspective, the discrimi-
native approach involves modelling only the conditional
distribution of the label given the input feature data
sets, as opposed to the joint distribution of the labels
and features. Schematically, if we were to separate two
groups of points in a 2D space (FIG. 3a), the generative
approach builds a full model of each class, whereas the
discriminative approach focuses only on separating
the two classes.

A researcher applying a generative approach to the
transcription factor binding problem begins by con-
sidering what procedure could be used to generate
the observed data. A widely used generative model of
transcription factor binding uses a position-specific
frequency matrix (PSFM) (FIG. 3b), in which a collec-
tion of aligned binding sites of width w are summarized
in a 4 × w matrix (M) of frequencies, where the entry
at position i,j represents the empirical frequency of

observing the ith DNA base at position j. We can gener-
ate a random bound sequence according to this PSFM
model by drawing w random numbers, each in the
range [0,1〉. For the jth random number, we select the
corresponding DNA base according to the frequencies
in the jth column of the matrix. Conversely, scoring a
candidate binding site using the model corresponds to
computing the product of the corresponding frequen-
cies from the PSFM. This value is called the likelihood.
Training a PSFM is simple — the empirical frequency
of each nucleotide at each position simply needs to be
computed.

A simple example of a discriminative algorithm is
the support vector machine (SVM)24,25 (FIG. 3c), the goal
of which is to learn to output a value of 1 whenever
it is given a positive training example and a value of
–1 whenever it is given a negative training example.
In the transcription factor binding prediction prob-
lem, the input sequence of length w is encoded as a
binary string of length 4w, and each bit corresponds to
the presence or absence of a particular nucleotide at a
particular position.

This generative modelling approach offers several
compelling benefits. First, the generative description
of the data implies that the model parameters have
well-defined semantics relative to the generative pro-
cess. Accordingly, as shown in the example above,
the model not only predicts the locations to which a
given transcription factor binds but also explains why
the transcription factor binds there. If we compare two
different potential binding sites, we can see that the
model prefers one site over another and also that
the reason is, for example, the preference for an ade-
nine rather than a thymine at position 7 of the motif.
Second, generative models are frequently stated in
terms of probabilities, and the probabilistic framework
provides a principled way to handle problems like
missing data. For example, it is still possible for a PSFM
to make a prediction for a binding site where one or
more of the bound residues is unknown. This is accom-
plished by probabilistically averaging over the missing
bases. The output of the probabilistic framework has
well-defined, probabilistic semantics, and this can be
helpful when making downstream decisions about how
much to trust a given prediction.

In many cases, including the example of transcrip-
tion factor binding, the training data set contains a
mixture of positive and negative examples. In a genera-
tive setting, these two groups of examples are modelled
separately, and each has its own generative process. For
instance, for the PSFM model, the negative (or back-
ground) model is often a single set (B) of nucleotide
frequencies that represents the overall mean frequency
of each nucleotide in the negative training examples.
To generate a sequence of length w according to this
model, we again generate w random numbers, but now
each base is selected according to the frequencies in B.
To use the foreground PSFM model together with the
background model B, we compute a likelihood ratio
that is simply the ratio of the likelihoods computed
with respect to the PSFM and with respect to B.

R E V I E W S

324 | JUNE 2015 | VOLUME 16	 www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

The primary benefit of the discriminative model-
ling approach is that it probably achieves better per-
formance than the generative modelling approach with
infinite training data26,27. In practice, analogous gen-
erative and discriminative approaches often converge
to the same solution, and generative approaches can
sometimes perform better with limited training data.
However, when the amount of labelled training data is
reasonably large, the discriminative approach will
tend to find a better solution, in the sense that
it will predict the desired outcome more accurately
when tested on previously unseen data (assuming that
the data are from the same underlying distribution
as the training data). To illustrate this phenomenon,
we simulated data according to a simple PSFM model
and trained a PSFM and an SVM, varying the number
of training examples. To train a model with a width of
19 nucleotides to discriminate between bound and
unbound sites with 90% accuracy requires 8 training
examples for a PSFM model and only 4 examples for
an SVM model (FIG. 3d). This improvement in perfor-
mance is achieved because, by not attempting to accu-
rately characterize the simpler parts of the 2D space,

the discriminative model performs better at solving the
discrimination task at hand. Thus, empirically, the dis-
criminative approach will tend to give predictions that
are more accurate.

However, the flipside of this accuracy is that by solv-
ing a single problem well, the discriminative approach
fails to solve other problems at all. Specifically, because
the internal parameters of a generatively trained model
have well-defined semantics, we can use the model to
ask various related questions, for example, not only
whether CCCTC-binding factor (CTCF) bind to a
particular sequence but also why does it bind to this
sequence more tightly than to some other sequence. By
contrast, the discriminative model only enables us to
answer the single question for which it was designed.
Thus, choosing between a generative and discrimi-
native model involves a trade-off between predictive
accuracy and interpretability of the model. Although
the distinction between generative and discriminative
models plays a large part in determining the interpret-
ability of a model, the model’s complexity — that is, the
number of parameters it has — can be just as impor-
tant. Models of either type that have a large number

Nature Reviews | Genetics

6
8

Pr (AAGTGT) = 0.75 × 0.75 × 0.13 × 1.00 × 1.00 × 0.75
 = 0.05

b

d

10 100

A
cc

ur
ac

y

PSFM
SVM

A C G T A C G T A C G T ... A C G T

?

Input: AAGTGT

0.8

0.9

1.0

Number of training examplesOutput: ‘bound’ or ‘not bound’

A
C
G
T

0.75
0.00
0.00
0.25

0.75
0.00
0.13
0.13

0.25
0.13
0.13
0.50

0.00
0.00
1.00
0.00

0.25
0.00
0.00
0.75

TAATGT
AATTGT
AATTGA
ATCTGT
AATTGT
TGTTGT
AAATGA

a

c

–

+

+

+
+

+

+
+ +

+

–

–

–
–

–

–
– –

–

+

+

+
+

+

+
+ +

+

–

–

–
–

–

–
– –

–

AAGTGT Generative Discriminative

Figure 3 | Two models of transcription factor binding.  a | Generative and discriminative models are different in their
interpretability and prediction accuracy. If we were to separate two groups of points, the generative model characterizes
both classes completely, whereas the discriminative model focuses on the boundary between the classes. b | In a
position-specific frequency matrix (PSFM) model, the entry in row i and column j represents the frequency of the ith base
occurring at position j in the training set. Assuming independence, the probability of the entire sequence is the product
of the probabilities associated with each base. c | In a linear support vector machine (SVM) model of transcription factor
binding, labelled positive and negative training examples (red and blue, respectively) are provided as input, and a
learning procedure adjusts the weights on the edges to predict the given label. d | The graph plots the mean accuracy
(±95% confidence intervals) of PSFM and SVM, on a set of 500 simulated test sets, of predicting transcription factor
binding as a function of the number of training examples.

R E V I E W S

NATURE REVIEWS | GENETICS	 VOLUME 16 | JUNE 2015 | 325

© 2015 Macmillan Publishers Limited. All rights reserved

Feature selection
The process of choosing a
smaller set of features from
a larger set, either before
applying a machine learning
method or as part of training.

Input space
A set of features chosen to be
used as input for a machine
learning method.

Uniform prior
A prior distribution for a
Bayesian model that assigns
equal probabilities to all
models.

of parameters tend to be difficult to interpret but can
generally achieve higher accuracy than models with
few parameters if they are provided with enough data.
The complexity of a model can be limited either by
choosing a simple model or by using a feature selection
strategy to restrict the complexity of the learned model.

Incorporating prior knowledge
In many applications, the success or failure of a
machine learning method depends on the extent to
which the method accurately encodes various types of
prior knowledge about the problem at hand. Indeed,
much of the practical application of machine learning
involves understanding the details of a particular prob-
lem and then selecting an algorithmic approach that
enables those details to be accurately encoded. There
is no optimal machine learning algorithm that works
best for all problems28, so the selection of an approach
that matches the researcher’s prior knowledge about the
problem is crucial to the success of the analysis.

Often, the encoding of prior knowledge is implicit
in the framing of the machine learning problem. As
an example, consider the prediction of nucleosome
positioning from primary DNA sequence6. The labels
for this prediction task can be derived, for example,
from an MNase–seq assay. In this case, after appropri-
ate processing, each base is assigned an integer count
of the number of nucleosome-sized fragments that
cover the base. Therefore, it might seem natural to
frame the problem as a regression, in which the input
is, for example, a sequence of 201 bp and the output is
the predicted coverage at the centre of the sequence.
However, in practice, we may be particularly inter-
ested in identifying nucleosome-free regions. Hence,
rather than asking the algorithm to solve the problem
of predicting exact coverage at each base, we might
instead opt to predict whether each base occurs in a
nucleosome-free region. Switching from regression
to classification makes the problem easier but, more
importantly, this switch also encodes the prior knowl-
edge that regions of high MNase accessibility are of
particular biological interest.

Implicit prior knowledge. In other cases, prior knowl-
edge is encoded implicitly in the choice of data that
we provide as input to the machine learning algo-
rithm. For example, Yip et al.29 trained a collection

of machine learning methods to distinguish among
various types of genomic elements. Using chromatin
data — DNase I accessibility and ChIP–seq profiles of
histone modifications and transcription factor binding
— one classifier distinguished regulatory regions that
are close to a gene from regulatory regions that are far
away from any gene. In this context, design of the input
space (that is, the features that are provided as input
to the classifier) is of crucial importance. In the work
carried out by Yip et al.29, the features were computed
by averaging over a 100‑bp window. The choice of a
100‑bp window is likely to reflect the prior knowledge
that, at least for histone modification data, the data are
arguably only meaningful at approximately the scale
of a single nucleosome (147 bp) or larger. Moreover,
replacing a single averaged feature with 100 separate
features may be problematic. By contrast, for DNase
accessibility data, it is plausible that averaging over
100 bp may remove some useful signal. Alternatively,
prior knowledge may be implicitly encoded in the
learning algorithm itself, in which some types of solu-
tions are preferred over others30. Therefore, in general,
the choice of input data sets, their representations and
any pre-processing must be guided by prior knowledge
about data and application.

Probabilistic priors. In a probabilistic framework,
some forms of prior knowledge can be represented
explicitly by specifying a prior distribution over the
data. A common prior distribution is the uniform prior
(also known as ‘uninformative’ prior) which, despite
the name, can be useful in some contexts. Consider,
for example, a scenario in which we have gathered a
collection of ten validated binding sites for a particu-
lar transcription factor (FIG. 4), and we observe that
the sequences cluster around a clear consensus motif.
If we represent these sequences using a pure PSFM
then, because our data set is fairly small, a substan-
tial number of the entries in the PSFM will be zero.
Consequently, the model will assign any sequence that
contains one of these zero entries an overall proba-
bility of zero, even if the sequence otherwise exactly
matches the motif. This is counter-intuitive. The solu-
tion to this problem is to encode the prior knowledge
that every possible DNA sequence has the potential to
be bound by a given transcription factor. The result
is that even sequences containing nucleotides that we

Nature Reviews | Genetics

A
C
G
T

0.25
0.01
0.01
0.73

A A G T G T
T A A T G T
A A T T G T
A A T T G A
A T C T G T
A A T T G T
T G T T G T
A A A T G A

0.01
0.01
0.96
0.01

0.25
0.13
0.13
0.49

0.73
0.01
0.13
0.13

0.73
0.01
0.01
0.25

A
C
G
T

A
C
G
T

2.1
0.1
0.1
6.1

2
0
0
6

0
0
8
0

2
1
1
4

6
0
1
1

6
0
0
2

0.1
0.1
8.1
0.1

2.1
1.1
1.1
4.1

6.1
0.1
1.1
1.1

6.1
0.1
0.1
2.1

Counts Counts and pseudocounts FrequenciesInput

Figure 4 | Incorporating a probabilistic prior into a position-specific frequency matrix.  A simple, principled
method for putting a probabilistic prior on a position-specific frequency matrix involves augmenting the observed
nucleotide counts with pseudocounts and then computing frequencies with respect to the sum. The magnitude of the
pseudocount corresponds to the weight assigned to the prior.

R E V I E W S

326 | JUNE 2015 | VOLUME 16	 www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

Dirichlet mixture priors
Prior distributions for a
Bayesian model over the
relative frequencies of, for
example, amino acids.

Kernel methods
A class of machine learning
methods (for example, support
vector machine) that use a
type of similarity measure
(called a kernel) between
feature vectors.

have never observed in a given position can still be
assigned a non-zero probability by the model.

In many probability models, much more sophis-
ticated priors have been developed to capture more-
complex prior knowledge. A particularly successful
example is the use of Dirichlet mixture priors in protein
modelling31. In this example, the idea is that if we are
examining an alignment of protein sequences and if we
see many aligned leucines in a particular column, then,
because we know that leucine and valine are biochemi-
cally similar, we may want to assign a high probability
to sequences that contain a valine in that same column,
even if we have never seen a valine there in our train-
ing data. The name Dirichlet mixture refers to the fact
that the prior distribution is represented as a Dirichlet
distribution, and that the distribution is a mixture in
which each component corresponds to a group of bio-
chemically similar amino acids. Such priors lead to
substantially improved performance both in the mod-
elling of evolutionarily related families of proteins31 and
in the discovery of protein motifs32.

Prior information in non-probabilistic models. By
contrast, the incorporation of prior knowledge into
non-probabilistic methods can be more challenging.
For example, discriminative classifiers, such as artifi-
cial neural networks (ANNs) or random forests, do not
provide any explicit mechanism for representing prior

knowledge. The topology of a multilayer ANN can rep-
resent information about dependencies between input
features in the input space, but more general priors
cannot be represented.

One class of discriminative methods does provide a
more general mechanism for representing prior knowl-
edge, if that knowledge can be encoded into a general-
ized notion of similarity. Kernel methods are algorithms
that use a general class of mathematical functions
called kernels in place of a simple similarity func-
tion (specifically, the cosine of the angle between two
input vectors)33. The ‘flagship’ kernel method is
the SVM classifier, which has been widely used in
many fields, including biological applications rang-
ing from DNA and protein sequence classification to
mass spectrometry analysis25. Other methods that can
use kernels include support vector regression as well as
classical algorithms such as k‑means clustering, prin-
cipal component analysis and hierarchical clustering.
Prior knowledge can be provided to a kernel method
by selecting or designing an appropriate kernel func-
tion. For example, a wide variety of kernels can be
defined between pairs of DNA sequences, in which the
similarity can be based on shared k‑mers irrespective of
their positions within the sequences34, on nucleotides
occurring at particular positions35 or on a mixture of
the two36. A DNA sequence can even encode a simple
model of molecular evolution, using algorithms that
are similar to the Smith–Waterman alignment algo-
rithm37. Furthermore, the Fisher kernel provides a
general framework for deriving a kernel function from
any probability model38. In this way, formal probabil-
istic priors can be used in conjunction with any kernel
method. Kernel methods have a rich literature, which
is reviewed in more detail in REF. 39.

Handling heterogeneous data
Another common challenge in learning from real bio-
logical data is that the data themselves are heterogene-
ous. For example, consider the problem of learning to
assign Gene Ontology terms to genes. For a given term,
such as ‘cytoskeleton-dependent intracellular transport’,
a wide variety of data types might be relevant, includ-
ing the amino acid sequence of the protein encoded
by the gene; the inferred evolutionary relationships of
that protein to other proteins across various species;
the microarray or RNA-seq expression profile of the
gene across a variety of phenotypic or environmental
conditions; and the number and identity of neigh-
bouring proteins identified using yeast two-hybrid or
tandem affinity purification tagging experiments, or
GFP-tagged microscopy images (FIG. 5). Such data sets
are difficult to analyse jointly because of their hetero-
geneity: an expression profile is a fixed-length vector of
real values; protein–protein interaction information is
a binary network; and protein sequences are of variable
lengths and are made up of a discrete ‘alphabet’. Many
statistical and machine learning methods for classifi-
cation assume that all of the data can be represented
as fixed-length vectors of real numbers. Such methods
cannot be directly applied to heterogeneous data.

Nature Reviews | Genetics

MCDLLVISHSSL
MLLLDRTSCSRI
MKVLIDRVYDRD

Gene
+

G
en

e

Gene expression

Genetic interactions

Feature
extraction

Kernel
transformation

Probability
model

k-mers

G
en

e

+

G
en

e

Gene

G
en

e

G
en

e
G

en
e

GeneGene
0 1 0 1
1 0 0 1
0 0 0 0
0 1 1 0

a bCondition

G
en

e
Condition

Sequences

c

Cytoskeleton-
dependent
intracellular
transport

Amino acid sequencesGene expression Genetic interactions

Figure 5 | Three ways to accommodate heterogeneous data in machine learning. 
The task of predicting gene function labels requires methods that take as input data such
as gene expression profiles, genetic interaction networks and amino acid sequences.
These diverse data types can be encoded into fixed-length features, represented using
pairwise similarities (that is, kernels) or directly accommodated by a probability model.

R E V I E W S

NATURE REVIEWS | GENETICS	 VOLUME 16 | JUNE 2015 | 327

© 2015 Macmillan Publishers Limited. All rights reserved

Bayesian network
A representation of a
probability distribution that
specifies the structure of
dependencies between
variables as a network.

The most straightforward way to solve this problem
is to transform each type of data into vector format
before processing (FIG. 5a). For example, this was the
approach taken by Peña-Castillo et al.40 in an assess-
ment of methods for predicting gene function in mice.
Participating research groups were provided with sepa-
rate matrices, each representing a single type of data:
gene expression, sequence patterns, protein–protein
interactions, phenotypes, conservation profiles or dis-
ease associations. All matrices shared a common set of
rows (one per gene), but the number and meanings
of the columns differed from one matrix to the next. For
example, gene expression data were represented directly,
whereas protein sequence data were represented indi-
rectly through annotations from repositories such as
Pfam41 and InterPro42, and protein–protein interac-
tions were represented as square matrices in which
entries were the shortest-path lengths between genes.

Alternatively, each type of data can be encoded
using a kernel function (FIG. 5b), with one kernel for
each data type. Mathematically, the use of kernels is
formally equivalent to transforming each data type into
a fixed-length vector; however, in the kernel approach
the vectors themselves are not always represented
explicitly. Instead, the similarity between two data ele-
ments — such as amino acid sequences or nodes in
a protein–protein interaction network — is encoded
in the kernel function. The kernel framework ena-
bles more-complex kernels to be defined from com-
binations of simple kernels. For example, a simple
summation of all the kernels for a given pair of genes
is itself a kernel function. Furthermore, the kernels
themselves can encode prior knowledge by, for exam-
ple, allowing for statistical dependencies within a given
data type but not between data types43. Kernels also
provide a general framework for automatically learning
the relative importance of each type of data relative to
a given classification task44.

Finally, probability models provide a very differ-
ent method for handling heterogeneous data. Rather
than forcing all the data into a vector representation
or requiring that all data be represented using pair-
wise similarities, a probability model explicitly repre-
sents diverse data types in the model itself (FIG. 5c). An
early example of this type of approach assigned gene
functional labels to yeast genes on the basis of gene
expression profiles; physical associations from affinity
purification, two-hybrid and direct binding measure-
ments; and genetic associations from synthetic lethal-
ity experiments45. The authors used a Bayesian network,
which is a formal graphical language for representing
the joint probability distribution over a set of random
variables46. Querying the network with respect to the
variable representing a particular Gene Ontology label
yields the probability that a given gene is assigned that
label. In principle, the probabilistic framework enables
a Bayesian network to represent any arbitrary data type
and carry out joint inference over heterogeneous data
types using a single model.

In practice, such inference can be challenging
because a joint probability model over heterogeneous

data may contain a very large number of trainable
parameters. Therefore, an alternative method for han-
dling heterogeneous data in a probability model is to
make use of the general probabilistic mechanism for
handling prior knowledge by treating one type of data
before another. For example, as discussed above, pre-
dicting the location on a genome sequence to which
a particular transcription factor will bind can be
framed as a classification problem and solved using a
PSFM. However, in vivo, the binding of a transcrip-
tion factor depends not only on the native affinity of
the transcription factor for a given DNA sequence but
also on the competitive binding of other molecules.
Accordingly, measurements of chromatin accessibility,
as provided by assays such as DNase-seq47, can offer
valuable information about the overall accessibility of
a given genomic locus to transcription factor binding.
A joint probability model can take this accessibility into
account48,49, but training such a model can be challeng-
ing. The alternative approach uses the DNase-seq data
to create a probabilistic prior and applies this prior
during the scanning of the PSFM50.

Feature selection
In any application of machine learning methods, the
researcher must decide what data to provide as input
to the algorithm. As noted above, this choice provides
a method for incorporating prior knowledge into the
procedure because the researcher can decide which
features of the data are likely to be relevant or irrel-
evant. For example, consider the problem of training
a multiclass classifier to distinguish, on the basis of
gene expression measurements, among different types
of cancers51. Such a classifier could be valuable in two
ways. First, the classifier itself could help to establish
accurate diagnoses in cases of atypical presentation or
histopathology. Second, the model produced during
the learning phase could perform feature selection,
thus identifying subsets of genes with expression pat-
terns that contribute specifically to different types of
cancer. In general, feature selection can be carried out
within any supervised learning algorithm, in which
the algorithm is given a large set of features (or input
variables) and then automatically makes a decision to
ignore some or all of the features, focusing on the sub-
set of features that are most relevant to the task at hand.

In practice, it is important to distinguish among
three distinct motivations for carrying out feature
selection. First, in some cases, we want to identify a
very small set of features that yield the best possible
classifier. For example, we may want to produce an
inexpensive way to identify a disease phenotype on the
basis of the measured expression levels of a handful of
genes. Such a classifier, if it is accurate enough, might
form the basis of an inexpensive clinical assay. Second,
we may want to use the classifier to understand the
underlying biology52–54. In this case, we want the fea-
ture selection procedure to identify only the genes with
expression levels that are actually relevant to the task
at hand in the hope that the corresponding functional
annotations or biological pathways might provide

R E V I E W S

328 | JUNE 2015 | VOLUME 16	 www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

http://pfam.xfam.org/
http://www.ebi.ac.uk/interpro/

Curse of dimensionality
The observation that analysis
can sometimes become more
difficult as the number of
features increases, particularly
because overfitting becomes
more likely.

Overfitting
A common pitfall in machine
learning analysis that occurs
when a complex model is
trained on too few data points
and becomes specific to the
training data, resulting in poor
performance on other data.

Label skew
A phenomenon in which two
labels in a supervised learning
problem are present at
different frequencies.

Sensitivity
(Also known as recall). The
fraction of positive examples
identified; it is given by the
number of positive predictions
that are correct divided by the
total number of positive
examples.

Precision
The fraction of positive
predictions that are correct;
it is given by the number of
positive predictions that are
correct divided by the total
number of positive predictions.

Precision-recall curve
For a binary classifier applied
to a given data set, a curve that
plots precision (y axis) versus
recall (x axis) for a variety of
classification thresholds.

insights into the aetiology of disease. Third, we often
simply want to train the most accurate possible classi-
fier55. In this case, we hope that the feature selection
enables the classifier to identify and eliminate noisy or
redundant features. Researchers are often disappointed
to find that feature selection cannot optimally perform
more than one of these three tasks simultaneously.

Feature selection is especially important in the third
case because the analysis of high-dimensional data sets,
including genomic, epigenomic, proteomic or metabo-
lomic data sets, suffers from the curse of dimensionality56
— the general observation that many types of analysis
become more difficult as the number of input dimen-
sions (that is, data measurements) grows very large. For
example, as the number of data features that are pro-
vided as input to a machine learning classifier grows,
it is increasingly likely that, by chance, one feature
perfectly separates the training examples into positive
and negative classes. This phenomenon leads to good
performance on the training data but poor generaliza-
tion to data that were not used in training owing to
overfitting of the model to the training data. Feature
selection methods and dimensionality reduction tech-
niques, such as principal component analysis or mul-
tidimensional scaling, aim to solve this problem by
projecting the data from higher to lower dimensions.

Imbalanced class sizes
A common stumbling block in many applications of
machine learning to genomics is the large imbalance
(or label skew) in the relative sizes of the groups being
classified. For example, suppose one is trying to use a
discriminative machine learning method to predict the
locations of enhancers in the genome. Starting with a
set of 641 known enhancers, the genome can be broken
up into 1,000‑bp segments and each segment assigned
a label (‘enhancer’ or ‘not enhancer’) on the basis of
whether it overlaps with a known enhancer. This pro-
cedure produces 1,711 positive examples and around
3,000,000 negative examples — 2,000 times as many
negative examples as positive examples. Unfortunately,
most software cannot handle 3,000,000 examples.

The most straightforward solution to this prob-
lem is to select a random, smaller subset of the data.
However, in the case of enhancer prediction, selecting
50,000 examples at random results in 49,971 negative
examples and only 28 positive examples. This number
of positive examples is far too small to train an accurate
classifier. To demonstrate this problem, we simulated
93 noisy ChIP–seq assays using a Gaussian model for
enhancers and background positions based on data
produced by the ENCODE Consortium57. We trained
a logistic regression classifier to distinguish between
enhancers and non-enhancers on the basis of these
data. The overall accuracy of the predictions (that is,
the percentage of predictions that were correct) was
99.9%. Although this seems good, accuracy is not an
appropriate measure with which to evaluate perfor-
mance in this setting because a null classifier that sim-
ply predicts everything to be non-enhancers achieves
nearly the same accuracy.

In this context, it is more appropriate to separately
evaluate sensitivity (that is, the fraction of enhanc-
ers detected) and precision (that is, the percentage of
predicted enhancers that are truly enhancers). The
balanced classifier described above has a high preci-
sion (>99.9%) but a very low sensitivity of 0.5%. The
behaviour of the classifier can be improved by using all
of the enhancers for training and then picking a ran-
dom set of 49,000 non-enhancer positions as negative
training examples. However, balancing the classes in
this way results in the classifier learning to reproduce
this artificially balanced ratio. The resulting classifier
achieves much higher sensitivity (81%) but very poor
precision (40%); thus, this classifier is not useful for
finding enhancers that can be validated experimentally.

It is possible to trade off sensitivity and precision
while retaining the training power of a balanced train-
ing set by placing weights on the training examples. In
the case of enhancer prediction, we used the balanced
training set, but during training we weighted each neg-
ative example 36 times more than a positive example.
Doing so results in an excellent sensitivity of 53% with
a precision of 95%.

In general, the most appropriate performance meas-
ure depends on the intended application of the classi-
fier. For problems such as identifying which tissue a
given cell comes from, it may be equally important to
identify rare and abundant tissues, and so the overall
number of correct predictions may be the most inform-
ative measure of performance. In other problems, such
as enhancer detection, predictions in one class may be
more important than predictions in another. For exam-
ple, if positive predictions will be published, the most
appropriate measure may be the sensitivity among a
set of predictions with a predetermined precision (for
example, 95%). A wide variety of performance meas-
ures are used in practice, including the F1 measure,
the receiver operating characteristic curve and the
precision-recall curve58,59, among others60. Machine learn-
ing classifiers perform best when they are optimized for
a realistic performance measure.

Handling missing data
Machine learning analysis can often be complicated by
missing data values. Missing values can come from vari-
ous sources, such as defective cells in a gene expression
microarray, ‘unmappable’ genome positions in a func-
tional genomic assay or measurements that are unre-
liable because they saturate the detection limits of an
instrument. Missing data values can be divided into two
types: values that are missing at random or for reasons
that are unrelated to the task at hand (such as defec-
tive microarray cells), and values that, when absent,
provide information about the task at hand (such as
saturated detectors). The presence or absence of values
of the latter type is usually best incorporated directly
into the model.

The simplest way to deal with data that are miss-
ing at random is to impute the missing values61. This
can be done either with a very simple strategy, such as
replacing all of the missing values with zero, or with a

R E V I E W S

NATURE REVIEWS | GENETICS	 VOLUME 16 | JUNE 2015 | 329

© 2015 Macmillan Publishers Limited. All rights reserved

Marginalization
A method for handling missing
data points by summing over
all possibilities for that random
variable in the model.

Transitive relationships
An observed correlation
between two features that is
caused by direct relationships
between these two features
and a third feature.

more sophisticated strategy. For example, Troyanskaya
et al.62 used the correlations between data values to
impute missing microarray values. For each target gene
expression profile, the authors found the 10 expres-
sion profiles showing the greatest similarity to the
target profile, and they replaced each missing value in
the target profile with an average of the values in the
similar profiles. Imputing data points this way can be
used as a pre-processing step for any other analysis,
but downstream analyses are ‘blind’ to this information
and cannot make use of either the fact that a data point
is missing or the added uncertainty that results from
missing data values.

Another method for dealing with missing data is to
include in the model information about the ‘missing-
ness’ of each data point. For example, Kircher et al.63
aimed to predict the deleteriousness of mutations based
on functional genomic data. The functional genomic
data provided a feature vector associated with each
mutation, but some of these features were missing.
Therefore, for each feature, the authors added a Boolean
feature that indicated whether the corresponding fea-
ture value was present. The missing values themselves
were then replaced with zeroes. A sufficiently sophis-
ticated model will be able to learn the pattern that
determines the relationship between the feature and
the presence or absence indicator. An advantage of this
approach to handling missing data is that it is applica-
ble regardless of whether the absence of a data point is
significant — if it is not, the model will learn to ignore
the absence indicator.

Finally, probability models can explicitly model
missing data by considering all the potential miss-
ing values. For example, this approach was used by
Hoffman et al.21 to analyse functional genomic data,
which contain missing values due to ‘mappability’
issues from short-read sequencing data. The probabil-
ity model provides an annotation by assigning a label
to each position across the genome and modelling the

probability of observing a certain value given this label.
Missing data points are handled by summing over all
possibilities for that random variable in the model. This
approach, called marginalization, represents the case in
which a particular variable is unobserved. However,
marginalization is only appropriate when data points
are missing for reasons that are unrelated to the task at
hand. When the presence or absence of a data point is
likely to be correlated with the values themselves, incor-
porating presence or absence explicitly into the model
is more appropriate.

Modelling dependence among examples
So far, we have focused on machine learning tasks that
involve sets of independent instances of a common
pattern. However, in some domains, individual enti-
ties, such as genes, are not independent, and the rela-
tionships among them are important. By inferring such
relationships, it is possible to integrate many examples
into a meaningful network. Such a network might rep-
resent physical interactions among proteins, regula-
tory interactions between genes or symbiosis between
microorganisms. Networks are useful both for under-
standing the biological relationships between entities
and as input into a downstream analysis that makes use
of these relationships.

The most straightforward way to infer the relation-
ships among examples is to consider each pair indepen-
dently. In this case, the problem of network learning is
reduced to a normal machine learning problem, defined
on pairs of individuals rather than individual examples.
Qiu et al.64 used an SVM classifier to predict, using data
such as protein sequences and cellular localization,
whether a given pair of proteins physically interact.

A downside of any approach that considers each
relationship independently is that such methods can-
not take into account the confounding effects of indirect
relationships (FIG. 6). For example, in the case of gene
regulation, an independent model cannot infer whether
a pair of genes directly regulate each other or whether
they are both regulated by a third gene. Such spurious
inferred relationships, called transitive relationships, can
be removed by methods that infer the graph as a whole.
For example, Friedman et al.65 inferred a Bayesian net-
work on gene expression data that models which genes
regulate each other. Such a network includes only
direct effects and models indirect correlations through
multiple-hop paths in the network. Therefore, methods
that infer a network as a whole are more biologically
interpretable because they remove these indirect cor-
relations; a large number of such methods have been
described and reviewed elsewhere66,67.

Conclusions
On the one hand, machine learning methods, which are
most effective in the analysis of large, complex data sets,
are likely to become ever more important to genomics as
more large data sets become available through interna-
tional collaborative projects, such as the 1000 Genomes
Project, the 100,000 Genomes Project, ENCODE, the
Roadmap Epigenomics Project and the US National

Nature Reviews | Genetics

True regulatory
network

Correlation
network

Inferred
network

Regulation Correlation

Figure 6 | Inferring network structure.  Methods that
infer each relationship in a network separately, such as by
computing the correlation between each pair, can be
confounded by indirect relationships. Methods that infer
the network as a whole can identify only direct
relationships. Inferring the direction of causality inherent
in networks is generally more challenging than inferring
the network structure68; as a result, many network
inference methods, such as Gaussian graphical model
learning, infer only the network.

R E V I E W S

330 | JUNE 2015 | VOLUME 16	 www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.1000genomes.org
http://www.1000genomes.org
http://www.genomicsengland.co.uk

1.	 Mitchell, T. Machine Learning (McGraw-Hill, 1997).
This book provides a general introduction to
machine learning that is suitable for undergraduate
or graduate students.

2.	 Ohler, W., Liao, C., Niemann, H. & Rubin, G. M.
Computational analysis of core promoters in the
Drosophila genome. Genome Biol. 3, RESEARCH0087
(2002).

3.	 Degroeve, S., Baets, B. D., de Peer, Y. V. & Rouzé, P.
Feature subset selection for splice site prediction.
Bioinformatics 18, S75–S83 (2002).

4.	 Bucher, P. Weight matrix description of four eukaryotic
RNA polymerase II promoter elements derived from
502 unrelated promoter sequences. J. Mol. Biol. 4,
563–578 (1990).

5.	 Heintzman, N. et al. Distinct and predictive chromatin
signatures of transcriptional promoters and enhancers
in the human genome. Nature Genet. 39, 311–318
(2007).

6.	 Segal, E. et al. A genomic code for nucleosome
positioning. Nature 44, 772–778 (2006).

7.	 Picardi, E. & Pesole, G. Computational methods for ab
initio and comparative gene finding. Methods Mol.
Biol. 609, 269–284 (2010).

8.	 Ashburner, M. et al. Gene ontology: tool for the
unification of biology. Nature Genet. 25, 25–29
(2000).

9.	 Fraser, A. G. & Marcotte, E. M. A probabilistic view of
gene function. Nature Genet. 36, 559–564 (2004).

10.	 Beer, M. A. & Tavazoie, S. Predicting gene expression
from sequence. Cell 117, 185–198 (2004).

11.	 Karlic, R., R. Chung, H., Lasserre, J., Vlahovicek, K. &
Vingron, M. Histone modification levels are predictive
for gene expression. Proc. Natl Acad. Sci. USA 107,
2926–2931 (2010).

12.	 Ouyang, Z., Zhou, Q. & Wong, H. W. ChIP–seq of
transcription factors predicts absolute and differential
gene expression in embryonic stem cells. Proc. Natl
Acad. Sci. USA 106, 21521–21526 (2009).

13.	 Friedman, N. Inferring cellular networks using
probabilistic graphical models. Science 303,
799–805 (2004).

14.	 Hastie, T., Tibshirani, R. & Friedman, J. The Elements
of Statistical Learning: Data Mining, Inference and
Prediction (Springer, 2001).
This book provides an overview of machine learning
that is suitable for students with a strong
background in statistics.

15.	 Hamelryck, T. Probabilistic models and machine
learning in structural bioinformatics. Stat. Methods
Med. Res. 18, 505–526 (2009).

16.	 Swan, A. L., Mobasheri, A., Allaway, D., Liddell, S. &
Bacardit, J. Application of machine learning to
proteomics data: classification and biomarker
identification in postgenomics biology. OMICS 17,
595–610 (2013).

17.	 Upstill-Goddard, R., Eccles, D., Fliege, J. & Collins, A.
Machine learning approaches for the discovery of
gene–gene interactions in disease data. Brief.
Bioinform. 14, 251–260 (2013).

18.	 Yip, K. Y., Cheng, C. & Gerstein, M. Machine learning
and genome annotation: a match meant to be?
Genome Biol. 14, 205 (2013).

19.	 Day, N., Hemmaplardh, A., Thurman, R. E.,
Stamatoyannopoulos, J. A. & Noble, W. S.
Unsupervised segmentation of continuous genomic
data. Bioinformatics 23, 1424–1426 (2007).

20.	 Ernst, J. & Kellis, M. ChromHMM: automating
chromatin-state discovery and characterization.
Nature Methods 9, 215–216 (2012).
This study applies an unsupervised hidden Markov
model algorithm to analyse genomic assays such as
ChIP–seq and DNase-seq in order to identify new
classes of functional elements and new instances of
existing functional element types.

21.	 Hoffman, M. M. et al. Unsupervised pattern discovery
in human chromatin structure through genomic
segmentation. Nature Methods 9, 473–476 (2012).

22.	 Chapelle, O., Schölkopf, B. & Zien, A. (eds) Semi-
supervised Learning (MIT Press, 2006).

23.	 Stamatoyannopoulos, J. A. Illuminating eukaryotic
transcription start sites. Nature Methods 7, 501–503
(2010).

24.	 Boser, B. E., Guyon, I. M. & Vapnik, V. N. in A Training
Algorithm for Optimal Margin Classifiers (ed.
Haussler, D.) 144–152 (ACM Press, 1992).
This paper was the first to describe the SVM, a
type of discriminative classification algorithm.

25.	 Noble, W. S. What is a support vector machine?
Nature Biotech. 24, 1565–1567 (2006).
This paper describes a non-mathematical
introduction to SVMs and their applications to life
science research.

26.	 Ng, A. Y. & Jordan, M. I. Advances in Neural
Information Processing Systems (eds Dietterich, T.
et al.) (MIT Press, 2002).

27.	 Jordan, M. I. Why the logistic function? a tutorial
discussion on probabilities and neural networks.
Computational Cognitive Science Technical Report
9503 [online], http://www.ics.uci.edu/~dramanan/
teaching/ics273a_winter08/homework/jordan_logistic.
pdf (1995).

28.	 Wolpert, D. H. & Macready, W. G. No free lunch
theorems for optimization. IEEE Trans. Evol. Comput.1,
67–82 (1997).
This paper provides a mathematical proof that no
single machine learning method can perform best
on all possible learning problems.

29.	 Yip, K. Y. et al. Classification of human genomic
regions based on experimentally determined binding
sites of more than 100 transcription-related factors.
Genome Biol. 13, R48 (2012).

30.	 Urbanowicz, R. J., Granizo-Mackenzie, D. & Moore,
J. H. in Proceedings of the Parallel Problem Solving
From Nature 266–275 (Springer, 2012).

31.	 Brown, M. et al. in Proceedings of the Third International
Conference on Intelligent Systems for Molecular
Biology (ed. Rawlings, C.) 47–55 (AAAI Press, 1993).

32.	 Bailey, T. L. & Elkan, C. P. in Proceedings of the Third
International Conference on Intelligent Systems for
Molecular Biology (eds Rawlings, C. et al.) 21–29
(AAAI Press, 1995).

33.	 Schölkopf, B. & Smola, A. Learning with Kernels
(MIT Press, 2002).

34.	 Leslie, C. et al. (eds) Proceedings of the Pacific
Symposium on Biocomputing (World Scientific, 2002).

35.	 Rätsch, G. & Sonnenburg, S. in Kernel Methods in
Computational Biology (eds Schölkopf, B. et al.)
277–298 (MIT Press, 2004).

36.	 Zien, A. et al. Engineering support vector machine
kernels that recognize translation initiation sites.
Bioinformatics 16, 799–807 (2000).

37.	 Saigo, H., Vert, J.‑P. & Akutsu, T. Optimizing amino
acid substitution matrices with a local alignment
kernel. BMC Bioinformatics 7, 246 (2006).

38.	 Jaakkola, T. & Haussler, D. Advances in Neural
Information Processing Systems 11 (Morgan
Kauffmann, 1998).

39.	 Shawe-Taylor, J. & Cristianini, N. Kernel Methods for
Pattern Analysis (Cambridge Univ. Press, 2004).
This textbook describes kernel methods, including
a detailed mathematical treatment that is suitable
for quantitatively inclined graduate students.

40.	 Peña-Castillo, L. et al. A critical assessment of
M. musculus gene function prediction using integrated
genomic evidence. Genome Biol. 9, S2 (2008).

41.	 Sonnhammer, E., Eddy, S. & Durbin, R. Pfam: a
comprehensive database of protein domain families
based on seed alignments. Proteins 28, 405–420
(1997).

42.	 Apweiler, R. et al. The InterPro database, an
integrated documentation resource for protein
families, domains and functional sites. Nucleic Acids
Res. 29, 37–40 (2001).

43.	 Pavlidis, P., Weston, J., Cai, J. & Noble, W. S.
Learning gene functional classifications from multiple
data types. J. Computat. Biol. 9, 401–411 (2002).

44.	 Lanckriet, G. R. G., Bie, T. D., Cristianini, N.,
Jordan, M. I. & Noble, W. S. A statistical framework
for genomic data fusion. Bioinformatics 20,
2626–2635 (2004).

45.	 Troyanskaya, O. G., Dolinski, K., Owen, A. B.,
Altman, R. B. & Botstein, D. A. Bayesian framework
for combining heterogeneous data sources for gene
function prediction (in Saccharomyces cerevisiae).
Proc. Natl Acad. Sci. USA 100, 8348–8353 (2003).

46.	 Pearl, J. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference (Morgan
Kaufmann, 1998).
This textbook on probability models for machine
learning is suitable for undergraduates or graduate
students.

47.	 Song, L. & Crawford, G. E. DNase-seq: a high-
resolution technique for mapping active gene
regulatory elements across the genome from
mammalian cells. Cold Spring Harbor Protoc. 2,
pdb.prot5384 (2010).

48.	 Wasson, T. & Hartemink, A. J. An ensemble model of
competitive multi-factor binding of the genome.
Genome Res. 19, 2102–2112 (2009).

49.	 Pique-Regi, R. et al. Accurate inference of
transcription factor binding from DNA sequence
and chromatin accessibility data. Genome Res. 21,
447–455 (2011).

50.	 Cuellar-Partida, G. et al. Epigenetic priors for
identifying active transcription factor binding sites.
Bioinformatics 28, 56–62 (2011).

51.	 Ramaswamy, S. et al. Multiclass cancer diagnosis
using tumor gene expression signatures. Proc. Natl
Acad. Sci. USA 98, 15149–15154 (2001).

52.	 Glaab, E., Bacardit, J., Garibaldi, J. M. &
Krasnogor, N. Using rule-based machine learning for
candidate disease gene prioritization and sample
classification of cancer gene expression data. PLoS
ONE 7, e39932 (2012).

53.	 Tibshirani, R. J. Regression shrinkage and selection
via the lasso. J. R. Statist. Soc. B 58, 267–288
(1996).
This paper was the first to describe the technique
known as lasso (or L1 regularization), which performs
feature selection in conjunction with learning.

54.	 Urbanowicz, R. J., Granizo-Mackenzie, A. &
Moore, J. H. An analysis pipeline with statistical and
visualization-guided knowledge discovery for
Michigan-style learning classifier systems. IEEE
Comput. Intell. Mag. 7, 35–45 (2012).

55.	 Tikhonov, A. N. On the stability of inverse problems.
Dokl. Akad. Nauk SSSR 39, 195–198 (1943).
This paper was the first to describe the
now-ubiquitous method known as L2 regularization
or ridge regression.

56.	 Keogh, E. & Mueen, A. Encyclopedia of Machine
Learning (Springer, 2011).

57.	 ENCODE Project Consortium. An integrated
encyclopedia of DNA elements in the human genome.
Nature 489, 57–74 (2012).

58.	 Manning, C. D. & Schütze, H. Foundations of Statistical
Natural Language Processing (MIT Press, 1999).

59.	 Davis, J. & Goadrich, M. Proceedings of the
International Conference on Machine Learning
(ACM, 2006).
This paper provides a succinct introduction to
precision-recall and receiver operating
characteristic curves, and details under which
scenarios these approaches should be used.

Institutes of Health’s 4D Nucleome Initiative. On the
other hand, even in the presence of massive amounts
of data, machine learning techniques are not generally
useful when applied in an arbitrary manner. In practice,
achieving good performance from a machine learn-
ing method usually requires theoretical and practical
knowledge of both machine learning methodology and
the particular research application area. As new tech-
nologies for generating large genomic and proteomic

data sets emerge — pushing beyond DNA sequencing to
mass spectrometry, flow cytometry and high-resolution
imaging methods — demand will increase not only for
new machine learning methods but also for experts
that are capable of applying and adapting them to big
data sets. In this sense, both machine learning itself and
scientists proficient in these applications are likely to
become increasingly important to advancing genetics
and genomics.

R E V I E W S

NATURE REVIEWS | GENETICS	 VOLUME 16 | JUNE 2015 | 331

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/jordan_logistic.pdf
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/jordan_logistic.pdf
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/homework/jordan_logistic.pdf
https://commonfund.nih.gov/4Dnucleome/index

60.	 Cohen, J. Weighted κ: nominal scale agreement
provision for scaled disagreement or partial credit.
Psychol. Bull. 70, 213 (1968).

61.	 Luengo, J., García, S. & Herrera, F. On the choice of
the best imputation methods for missing values
considering three groups of classification methods.
Knowl. Inf. Syst. 32, 77–108 (2012).

62.	 Troyanskaya, O. et al. Missing value estimation
methods for DNA microarrays. Bioinformatics 17,
520–525 (2001).
This study uses an imputation-based approach to
handle missing values in microarray data. The
method was widely used in subsequent studies to
address this common problem.

63.	 Kircher, M. et al. A general framework for estimating
the relative pathogenicity of human genetic variants.
Nature Genet. 46, 310–315 (2014).
This study uses a machine learning approach to
estimate the pathogenicity of genetic variants

using a framework that takes advantage of the fact
that natural selection removes deleterious variation.

64.	 Qiu, J. & Noble, W. S. Predicting co‑complexed protein
pairs from heterogeneous data. PLoS Comput. Biol. 4,
e1000054 (2008).

65.	 Friedman, N., Linial, M., Nachman, I. & Pe’er, D. Using
Bayesian networks to analyze expression data.
J. Comput. Biol. 7, 601–620 (2000).

66.	 Bacardit, J. & Llorà, X. Large-scale data mining using
genetics-based machine learning. Wiley Interdiscip.
Rev. 3, 37–61 (2013).

67.	 Koski, T. J. & Noble, J. A review of Bayesian networks
and structure learning. Math. Applicanda 40, 51–103
(2012).

68.	 Pearl, J. Causality: Models, Reasoning and Inference
(Cambridge Univ. Press, 2000).

Competing interests statement
The authors declare no competing interests.

FURTHER INFORMATION
1000 Genomes Project: http://www.1000genomes.org
100,000 Genomes Project: http://www.genomicsengland.co.uk
4D Nucleome: https://commonfund.nih.gov/4Dnucleome/
index
ENCODE: http://www.encodeproject.org
InterPro: http://www.ebi.ac.uk/interpro/
Machine learning on Coursera: https://www.coursera.org/
course/ml
Machine learning open source software: https://mloss.org/
software/
Pfam: http://pfam.xfam.org/
PyML: http://pyml.sourceforge.net/
Roadmap Epigenomics Project: http://www.
roadmapepigenomics.org
Weka 3: http://www.cs.waikato.ac.nz/ml/weka/

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

R E V I E W S

332 | JUNE 2015 | VOLUME 16	 www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.1000genomes.org
http://www.genomicsengland.co.uk
https://commonfund.nih.gov/4Dnucleome/index
https://commonfund.nih.gov/4Dnucleome/index
http://www.encodeproject.org
http://www.ebi.ac.uk/interpro/
https://www.coursera.org/course/ml
https://www.coursera.org/course/ml
https://mloss.org/software/
https://mloss.org/software/
http://pfam.xfam.org/
http://pyml.sourceforge.net/
http://www.roadmapepigenomics.org
http://www.roadmapepigenomics.org
http://www.cs.waikato.ac.nz/ml/weka/

	Abstract | The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learn
	Figure 1 | A canonical example of a machine learning application. A training set of DNA sequences is provided as input to a learning procedure, along with binary labels indicating whether each sequence is centred on a transcription start site (TSS) or not
	Stages of machine learning
	Supervised versus unsupervised learning
	Figure 2 | A gene-finding model. A simplified gene-finding model that captures the basic properties of a protein-coding gene is shown. The model takes the DNA sequence of a chromosome, or a portion thereof, as input and produces detailed gene annotations
	Generative versus discriminative modelling
	Figure 3 | Two models of transcription factor binding. a | Generative and discriminative models are different in their interpretability and prediction accuracy. If we were to separate two groups of points, the generative model characterizes both classes c
	Figure 4 | Incorporating a probabilistic prior into a position-specific frequency matrix. A simple, principled method for putting a probabilistic prior on a position-specific frequency matrix involves augmenting the observed nucleotide counts with pseudoc
	Incorporating prior knowledge
	Figure 5 | Three ways to accommodate heterogeneous data in machine learning. 
The task of predicting gene function labels requires methods that take as input data such as gene expression profiles, genetic interaction networks and amino acid sequences. The
	Handling heterogeneous data
	Feature selection
	Imbalanced class sizes
	Handling missing data
	Figure 6 | Inferring network structure. Methods that infer each relationship in a network separately, such as by computing the correlation between each pair, can be confounded by indirect relationships. Methods that infer the network as a whole can identi
	Modelling dependence among examples
	Conclusions

